99 Washington Street Melrose, MA 02176 Fax 781-665-0780

TestEquipmentDepot.com

110 x 491 x 140 mm 4.8 kg (4-3/8 x 19-3/8 x 5-1/2"10.6 lbs)

Model 2793 is a high-accuracy, stable DC variable resistor with 6 dials and is available in two styles: 279301 for medium resistance from 0.1 to 1,111.210 Ω in $1m\Omega$ steps (best suited for calibration of resistance thermometers or bridges); 279303 for high resistance from 0 to 111.1110 $M\Omega$ in 100Ω steps (suitable for calibration of insulation resistance testers or bridges).

279301

- High accuracy and stability
- High reproducibility

Excellent reproducibility is obtainable because dial switches with low contact resistance are used. For example, changes in contact resistance is within ± 1.1 m Ω at 0.1Ω setting.

- $1m\Omega$ resolution
- Simple, quick dial operation
- In-line display for easy reading
- Ideal for calibration of resistance thermometers and

Due to its high accuracy and a dial system, various types of resistance thermometers and bridges can be calibrated accurately and promptly.

Excellent anti-shock and -vibration properties

279303

- Up to $100M\Omega$ in 100Ω step
- Low voltage coefficient

Variation of the resistance value is less than ±0.1% at $1M\Omega$ and $10M\Omega$ steps against 100V application, and less than $\pm 0.04\%$ at 100Ω , $1k\Omega$, $10k\Omega$, and $100k\Omega$ steps against 10V application.

- Shock- and vibration-proof construction
- Easy-to-read in-line indication
- Best suited for calibration of insulation resistance testers and bridges

SPECIFICATIONS

279301

Resistance Range: 0.100 to 1,111.210 Ω (Minimum resist-

ance is 0.100Ω).

Dial Composition: $0.001\Omega \times 10 + 0.01\Omega \times 10 + 0.1\Omega \times 11 + 1\Omega$

 \times 10 + 10 Ω \times 10 + 100 Ω \times 10

Resolution: 0.001Ω

Accuracy: $\pm (0.01\% + 2 \text{ m}\Omega)$ at temperature 23 $\pm 2^{\circ}\text{C}$, humidity 45 to 75%, and 0.1 W power application

Max. Allowable Input Power: 0.25 W/step. Within 1 W

for overall instrument.

Max. Allowable Input Current:

50 mA (100 Ω steps), 150 mA (10 Ω steps), 500 mA $(1 \Omega \text{ steps})$, and $1.5 A (0.1 \Omega \text{ steps})$.

Insulation Resistance: More than $500 \,\mathrm{M}\Omega$ at $500 \,\mathrm{V}$ DC between panel and circuit.

Dielectric Strength: 1,000 V AC for one minute between panel and circuit.

Temperature Coefficient:

Temperature coefficient	100 Ω step	10 Ω step	1 Ω step	0.1 Ω step
α ₂₀ (x 10 ⁻⁶ /°C)	-5 to +10	-5 to +20	Approx. 20 to 90	Approx. 90 to 900
$\beta (\times 10^{-6})^{\circ}C^{2}$	-0.3 to -0.7		_	_

Variation of resistance with temperature change is given by the following equation:

Rt = R₂₀ [$1 + \alpha_{20}(t - 20) + \beta (t - 20)^2$]

where,Rt: Resistance value at t°C

R₂₀: Resistance value at 20°C

279303

Resistance Range: 0 to 111.1110 M Ω .

Dial Composition: $100 \Omega \times 10 + 1 k\Omega \times 10 + 10 k\Omega \times 10 +$ $100 \text{ k}\Omega \times 10 + 1 \text{ M}\Omega \times 10 + 10 \text{ M}\Omega \times 10.$

Accuracy: 100Ω , $1 k\Omega$, $10 k\Omega$ and $100 k\Omega$ steps...

 $\pm (0.05\% + 0.05 \Omega)$

1 M Ω and 10 M Ω steps . . . ±0.2% (At temperature 23 ±2°C, humidity below 75%, including residual resistance of approx. 0.05Ω).

Max. Allowable Input:

100 Ω step 100 mA $1 \,\mathrm{k}\Omega$ step 30 mA $10 \, k\Omega$ step 10 mA

 $100 \,\mathrm{k}\Omega$ step 3 mA (100 to $600 \,\mathrm{k}\Omega$) $(700 \,\mathrm{k}\Omega \,\mathrm{to}\,\,1\,\mathrm{M}\Omega)$

2,000 V $1\,\mathrm{M}\Omega$ step 2,000 V $10\,\mathrm{M}\Omega$ step 2,000 V

Temperature Coefficient:

100 Ω , 1 k Ω step α_{20} = (-2 to +20) \times 10⁻⁶/ $^{\circ}$ C $\beta = -(0.3 \text{ to } 0.7) \times 10^{-6} / ^{\circ}\text{C}^2$

 $10 \text{ k}\Omega$, $100 \text{ k}\Omega$, $1 \text{ M}\Omega$, $10 \text{ M}\Omega$ step $\pm 30 \times 10^{-6} / ^{\circ}\text{C}$ Variation of resistance with temperature change is

given by the following equation: Rt = R_{20} [$1 + \alpha_{20}(t - 20) + \beta (t - 20)^2$]

where, Rt: Resistance value at t°C R₂₀ : Resistance value at 20°C

Insulation Resistance: More than $10^{11}\Omega$ at 1,000 V DC between panel and circuit.

Dielectric Strength: 2,500 V AC for one minute between panel and circuit.