

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat – Palm Beach Gardens

10415 Riverside Drive, Suite 107 Palm Beach Gardens, FL 33410

Fulfills the requirements of

ISO/IEC 17025:2017

and national standards

ANSI/NCSL Z540-1-1994 (R2002) AND ANSI/NCSL Z540.3-2006 (R2013)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 07 September 2027 Certificate Number: AC-2489.25

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002) ANSI/NCSL Z540.3-2006 (R2013)

Transcat – Palm Beach Gardens

10415 Riverside Drive, Suite 107
Palm Beach Gardens, FL 33410
Christopher Bailey christopher.bailey@transcat.com

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 02 September 2025

Certificate Number: AC-2489.25 Certificate Expiry Date: 07 September 2027

Acoustics and Vibration

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Sound Measuring Equipment	125 Hz to 2 kHz (74 to 104) dB 114 dB 4 kHz (74 to 104) dB 114 dB	0.45 dB 0.33 dB 0.72 dB 0.6 dB	Comparison to GenRad 1986 Sound Level Calibrator

Electrical – DC/Low Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(0.2 to 20) μA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz	0.2 % of reading + 2.5 nA 0.2 % of reading + 2.5 nA 0.2 % of reading + 2.5 nA	Comparison to Fluke 8588A 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(20 to 200) µA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (0.2 to 2) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (2 to 20) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (30 to 100) kHz (30 to 100) kHz (30 to 100) kHz (20 to 200) mA 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (10 to 30) kHz (10 to 30) kHz (2 to 10) kHz (10 to 30) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz (20 to 30) A 10 Hz to 2 kHz	0.28 mA/A + 5 nA 0.53 mA/A + 5 nA 0.74 mA/A + 5 nA 4.1 mA/A + 10 nA 0.28 mA/A + 50 nA 0.53 mA/A + 50 nA 0.74 mA/A + 50 nA 4.1 mA/A + 0.1 μA 0.28 mA/A + 0.5 μA 0.74 mA/A + 0.5 μA 4.1 mA/A + 1 μA 0.28 mA/A + 5 μA 0.74 mA/A + 5 μA 0.74 mA/A + 5 μA 0.52 mA/A + 5 μA 0.74 mA/A + 5 μA 0.74 mA/A + 5 μA 0.74 mA/A + 5 μA 0.80 mA/A + 0.1 mA 0.80 mA/A + 0.1 mA 0.81 mA/A + 0.5 mA 0.82 mA/A + 0.5 mA 0.83 mA/A + 0.5 mA	Comparison to Fluke 8588A 8.5 Digit Multimeter
AC Current – Measure ¹	(2 to 10) kHz (10 to 100) A (50 to 60) Hz 400 Hz 1 kHz	1.2 mA/A + 12 mA 0.23 mA/A + 5 mA 1.1 mA/A + 5 mA 2 mA/A + 5 mA	Comparison to Ohms Labs CS-100 Precision Shunt, Fluke 8588A 8.5 Digit Multimeter

ANAB ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	Up to 220 μA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz 220 μA to 2.2 mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz 220 mA to 2.2 A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz 22.2 A to 11 A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.011 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 65 nA 0.025 % of reading + 40 nA 0.016 % of reading + 35 nA 0.011 % of reading + 3.5 nA 0.02 % of reading + 0.11 μA 0.11 % of reading + 0.65 μA 0.025 % of reading + 0.4 μA 0.016 % of reading + 0.35 μA 0.011 % of reading + 0.35 μA 0.011 % of reading + 0.55 μA 0.11% of reading + 5 μA 0.016 % of reading + 3.5 μA 0.011 % of reading + 10 μA 0.025 % of reading + 10 μA 0.046 % of reading + 0.16 mA 0.046 % of reading + 0.17 μA 0.095 % of reading + 0.38 μA 0.36 % of reading + 0.75 μA	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier
AC Current – Source ¹	Up to 2 A (10 to 850) Hz (0.85 to 6) kHz (6 to 10) kHz 2 A to 20 A (10 to 850) Hz (0.85 to 6) kHz (6 to 10) kHz	0.009 % of reading + 40 μA 0.04 % of reading + 80 μA 1.6 % of reading + 62 mA 0.009 % of reading + 0.4 mA 0.04 % of reading + 0.8 mA 2.3 % of reading + 94 mA	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 3 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	20 A to 120 A (10 to 850) Hz (0.85 to 6) kHz (6 to 10) kHz	0.009 % of reading + 2.4 mA 0.04 % of reading + 4.8 mA 3.1 % of reading + 0.7 A	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier
AC Clamp-on Ammeter ¹ (Toroidal Type) Transformer Type Sensor	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.3 % of reading + 26 mA 0.83 % of reading + 47 mA 0.35 % of reading + 0.12 A 1.1 % of reading + 0.22 A	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 5500A/COIL 50-turn Coil
AC Clamp-on Ammeter ¹ (Non-Toroidal Type) Hall Effect Sensor	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.57 % of reading + 0.25 A 1 % of reading + 0.25 A 0.6 % of reading + 0.9 A 1.3 % of reading + 0.92 A	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 5500A/COIL 50-turn Coil
AC Clamp-on Ammeter ¹ (Non-Toroidal Type) Hall Effect Sensor	(1 to 6) kA (10 to 300) Hz (1 to 2) kA (300 to 440) Hz (2 to 6) kA (300 to 440) Hz	0.62 % of reading 0.8 % of reading 0.66 % of reading	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 52120A Transconductance Amplifier, 6 kA Coil
AC Voltage – Measure ¹	(0.1 to 10) mV 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz	0.029 % of reading + 1.1 μV 0.037 % of reading + 1.1 μV 0.038 % of reading + 1.1 μV 0.3 % of reading + 0.78 μV 1 % of reading + 3.9 μV 2 % of reading + 3.9 μV	Comparison to Fluke 8588A 8.5 Digit Multimeter

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(10 to 100) mV 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (0.1 to 1) V 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz (100 to 300) kHz (300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (2 to 4) MHz (300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (1 to 10) V 1 Hz to 2 kHz (2 to 10) kHz (100 to 300) kHz (30 to 100) kHz (100 to 300) kHz (30 to 100) kHz (100 to 300) kHz (30 to 100) kHz (100 to 300) kHz (300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (1 to 2) MHz (2 to 4) MHz (1 to 2) MHz (1 to 2) MHz (1 to 2) MHz (2 to 4) MHz (1 to 2) MHz (1 to 30) kHz (300 kHz to 1 MHz (1 to 2) MHz (1 to 30) kHz (300 kHz to 100) kHz (100 to 300) kHz	0.008 9 % of reading + 0.5 μV 0.013 % of reading + 0.5 μV 0.023 % of reading + 1 μV 0.053 % of reading + 5 μV 0.21 % of reading + 31 μV 1 % of reading + 0.1 mV 1.5 % of reading + 0.5 mV 4.1 % of reading + 1 mV 8.4 % of reading + 1 mV 16 % of reading + 1 mV 0.007 7% of reading + 5 μV 0.012 % of reading + 5 μV 0.023 % of reading + 50 μV 0.21 % of reading + 0.31 mV 1 % of reading + 10 mV 1.5 % of reading + 10 mV 8.2 % of reading + 10 mV 8.2 % of reading + 10 mV 8.2 % of reading + 10 mV 0.012 % of reading + 50 μV 0.012 % of reading + 10 mV 1.5 % of reading + 10 mV 1.5 % of reading + 50 μV 0.012 % of reading + 50 μV 0.023 % of reading + 0.1 mV 0.053 % of reading + 0.1 mV 1.5 % of reading + 0.1 mV 1.5 % of reading + 0.1 V 0.009 % of reading + 0.5 mV 0.011 % of reading + 0.5 mV 0.023 % of reading + 0.5 mV 0.013 % of reading + 0.5 mV 0.009 % of reading + 0.5 mV	Comparison to Fluke 8588A 8.5 Digit Multimeter

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 5 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(100 to 1 050) V 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (30 to 100) kHz	0.011 % of reading + 25 mV 0.011 % of reading + 25 mV 0.023 % of reading + 25 mV 0.059 % of reading + 0.1 V	Comparison to Fluke 8588A 8.5 Digit Multimeter
AC Voltage – Measure	Up to 40 mVp-p DC to 100 MHz (40 to 400) mVp-p DC to 100 MHz (400 to 500) mVp-p DC to 100 MHz	1.6 % of reading + 0.15 mV 1.6 % of reading + 1.5 mV 1.6 % of reading + 3 mV	Comparison to Differential Amplifier w/ Oscilloscope
AC High Voltage – Measure ¹	(0.7 to 5) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz (450 to 600) Hz (5 to 30) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz (450 to 600) Hz (30 to 50) kV 10 mHz to 10 Hz (100 to 200) Hz (30 to 50) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz	0.14 % of reading + 0.17 V 0.12 % of reading + 0.29 V 0.099 % of reading + 0.37 V 0.068 % of reading + 0.37 V 0.099 % of reading + 0.37 V 0.099 % of reading + 0.37 V 0.48 % of reading + 0.17 V 0.47 % of reading + 0.17 V 0.19 % of reading + 2.4 V 0.13 % of reading + 2.4 V 0.11 % of reading + 2.4 V 0.13 % of reading + 2.5 V 0.14 % of reading + 2.5 V 0.15 % of reading + 2.5 V 0.16 % of reading + 2.5 V 0.17 % of reading + 2.5 V 0.18 % of reading + 2.5 V 0.19 % of reading + 2.5 V	Comparison to Vitrek 4700 High Voltage Meter and Associated High Voltage Probes

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 6 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC High Voltage – Measure ¹	(50 to 70) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz	0.37 % of reading + 2.6 V 0.26 % of reading + 2.6 V 0.16 % of reading + 2.6 V 0.16 % of reading + 2.6 V 1.2 % of reading + 2.6 V 1.2 % of reading + 2.6 V 17 % of reading + 2.6 V	Comparison to Vitrek 4700 High Voltage Meter and Associated High Voltage Probes
AC Voltage – Source 1	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (20 to 22) mV (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (20 to 50) kHz (300 to 500) kHz	0.024 % of reading + 4 μV 0.009 % of reading + 4 μV 0.008 % of reading + 4 μV 0.002 % of reading + 4 μV 0.05 % of reading + 5 μV 0.11 % of reading + 10 μV 0.14 % of reading + 20 μV 0.27 % of reading + 20 μV 0.009 % of reading + 4 μV 0.009 % of reading + 4 μV 0.008 % of reading + 4 μV 0.01 % of reading + 4 μV 0.02 % of reading + 4 μV 0.05 % of reading + 10 μV 0.11 % of reading + 10 μV 0.14 % of reading + 20 μV 0.27 % of reading + 20 μV 0.024 % of reading + 7 μV 0.009 % of reading + 7 μV 0.005 7 % of reading + 7 μV 0.012 % of reading + 7 μV 0.012 % of reading + 7 μV 0.031 % of reading + 20 μV 0.046 % of reading + 20 μV 0.14 % of reading + 25 μV 0.27 % of reading + 45 μV	Comparison to Fluke 5730A Multiproduct Calibrator

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	220 mV to 2.2 V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (20 to 50) kHz (20 to 50) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (500 kHz to 1 MHz (220 to 250) V (15 to 50) Hz (250 to 1 100) V	0.024 % of reading + 40 μV 0.009 % of reading + 15 μV 0.004 2 % of reading + 8 μV 0.006 7 % of reading + 10 μV 0.008 5 % of reading + 30 μV 0.034 % of reading + 80 μV 0.1 % of reading + 0.2 mV 0.17 % of reading + 0.3 mV 0.009 % of reading + 0.15 mV 0.004 2 % of reading + 0.15 mV 0.008 3 % of reading + 0.1 mV 0.008 3 % of reading + 0.2 mV 0.17 % of reading + 0.2 mV 0.034 % of reading + 0.2 mV 0.01 % of reading + 0.5 mV 0.008 3 % of reading + 0.6 mV 0.1 % of reading + 2 mV 0.17 % of reading + 3.2 mV 0.024 % of reading + 3.2 mV 0.009 % of reading + 1.5 mV 0.005 2 % of reading + 1.5 mV 0.005 2 % of reading + 1.5 mV 0.015 % of reading + 1 mV 0.015 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 80 mV 0.03 % of reading + 80 mV	Comparison to Fluke 5730A Multiproduct Calibrator
AC Voltage – Source ¹	50 Hz to 1 kHz (220 to 750) V (30 to 50) kHz (50 to 100) kHz (220 to 1100) V 40 Hz to 1 kHz (1 to 20) kHz (20 to 30) kHz	0.007 % of reading + 3.5 mV 0.06 % of reading + 11 mV 0.06 % of reading + 11 mV 0.009 % of reading + 4 mV 0.017 % of reading + 6 mV 0.23 % of reading + 45 mV	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ Wide-Band Voltage (50 Ω)	30 Hz to 500 kHz (0.33 to 1.1) mV (1.1 to 3.3) mV (3.3 to 11) mV (11 to 33) mV (33 to 110) mV (110 to 330) mV (0.33 to 1.1) V (1.1 to 3.5) V	0.62 % of reading + 0.78 μV 0.54 % of reading + 1.2 μV 0.54 % of reading + 3.1 μV 0.47 % of reading + 6.2 μV 0.47 % of reading + 16 μV 0.39 % of reading + 39 μV 0.39 % of reading + 0.16 mV 0.31 % of reading + 0.19 mV	Comparison to Fluke 5730A/05 Multiproduct Calibrator
AC Voltage – Source ¹ Wide-Band Flatness (50 Ω) 1 kHz Reference	(0.33 to 1.1) mV (10 to 30) Hz (30 to 119.99) Hz (120 to 1.199 9) kHz (1.2 to 11.999) kHz (12 to 119.99) kHz 120 kHz to 1.199 9 MHz (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (30 to 50) MHz (30 to 50) MHz (30 to 119.99) Hz 120 Hz to 1.199 9) kHz (1.2 to 11.999) kHz (12 to 119.99) kHz (12 to 119.99) kHz (12 to 119.99) kHz (12 to 119.99) MHz (12 to 20) MHz (20 to 30) MHz (30 to 50) MHz	0.23 % of reading 0.078 % of reading 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.47 % of reading + 1.2 μV 1.2 % of reading + 5.8 μV 2.3 % of reading + 5.8 μV 0.23 % of reading 0.078 % of reading 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 1.2 % of reading + 1.2 μV 2.3 % of reading + 1.2 μV	Comparison to Fluke 5730A/05 Multiproduct Calibrator

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 9 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ Wide-Band Flatness (50 Ω) 1 kHz Reference	(3.3 to 11) mV	0.23 % of reading 0.078 % of reading + 1.2 μV 0.078 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 0.23 % of reading 0.078 % of reading 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 0.6 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.178 % of reading + 1.2 μV 0.18 % of reading + 1.2 μV 0.19 % of reading + 1.2 μV	Comparison to Fluke 5730A/05 Multiproduct Calibrator

ANAB
ANSI National Accreditation Board

Page 10 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(11) AC Voltage – Source ¹ Wide-Band Flatness (50 \Omega) 1 kHz Reference (16)	(1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (30 to 50) MHz (30 to 50) MHz (5 to 110) mV (1.2 to 2) MHz (20 to 30) MHz (20 to 30) MHz (30 to 50) MHz (30 to 50) MHz (30 to 50) MHz (30 to 119.99) Hz (30 to 119.99) Hz (12 to 11.999) kHz (12 to 11.999) kHz (12 to 11.999) kHz (20 Hz to 1.1999) MHz (20 to 30) MHz (30 to 50) MHz (20 to 30) MHz (20 to 30) MHz (20 to 30) MHz (20 to 30) MHz (30 to 50) MHz (30 to 50) MHz (30 to 50) MHz (20 to 30) MHz (30 to 50) MHz (12 to 20) MHz (12 to 21.99) MHz (12 to 11.99) Hz (30 to 119.99) Hz (30 to 119.99) Hz (30 to 119.99) Hz (30 Hz to 1.1999) kHz (12 to 11.999) kHz (12 to 11.999) kHz (12 to 11.999) kHz	0.16 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading 1.2 μV 0.23 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.6% of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.178 % of reading + 1.2 μV 0.18 % of reading + 1.2 μV 0.19 % of reading + 1.2 μV	Comparison to Fluke 5730A/05 Multiproduct Calibrator

ANAB
ANSI National Accreditation Board

Page 11 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ Wide-Band Flatness (50 Ω) 1 kHz Reference	(0.33 to 0.55) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (30 to 50) MHz (0.55 to 1.1) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (30 to 50) MHz (30 to 50) MHz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 11.999) MHz (12 to 11.999) MHz (11 to 1.75) V (1.2 to 2) MHz (20 to 30) MHz (30 to 50) MHz (12 to 20) MHz (11.75 to 3.5) V (1.2 to 2) MHz (11.75 to 3.5) V (1.2 to 2) MHz (11.75 to 3.5) V (1.2 to 2) MHz (11.75 to 3.5) V (1.2 to 20) MHz (11.90) MHz	0.16 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 1.6 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 0.078 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.178 % of reading + 1.2 μV 0.18 % of reading + 1.2 μV 0.19 % of reading + 1.2 μV 0.19 % of reading + 1.2 μV 0.19 % of reading + 1.2 μV	Comparison to Fluke 5730A/05 Multiproduct Calibrator
DC Current – Measure ¹	(30 to 50) MHz (0 to 20) μA (20 to 200) μA (0.2 to 2) mA (2 to 20) mA (20 to 200) mA (0.2 to 2) A (2 to 20) A (2 to 30) A	1.6 % of reading + 1.2 μV 29 μA/A + 0.4 nA 10 μA/A + 0.39 nA 9.9 μA/A + 3.9 nA 15 μA/A + 39 nA 58 μA/A + 1 μA 0.13 mA/A + 0.1 mA 0.23 mA/A + 0.4 mA 0.55 mA/A + 4.4 mA	Comparison to Fluke 8588A 8.5 Digit Multimeter

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 12 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Measure ¹	(10 to 100) A	0.15 mA/A + 3 mA	Comparison to Ohm Labs CS-100 Current Shunt, Fluke 8588A 8.5 Digit Multimeter
DC Current – Source ¹	(0.2 to 220) μA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA 220 mA to 2.2 A	40 μA/A + 6 nA 35 μA/A + 7 nA 35 μA/A + 40 nA 45 μA/A + 0.7 μA 80 μA/A + 12 μA	Comparison to Fluke 5730A Multiproduct Calibrator
DC Current – Source ¹	(2.2 to 11) A Up to 2 A (2 to 20) A	0.036 % of reading + 0.48 mA 0.012 % of reading + 0.16 mA 0.012 % of reading + 1.6 mA	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier
DC Current – Source ¹	(20 to 120) A	0.012 % of reading + 9.6 mA	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier
DC Clamp-on Ammeter ¹ (Non-Toroidal Type) Hall Effect Sensor	(20 to 150) A (150 to 1 000) A	0.5 % of reading + 0.14 A 0.52 % of reading + 0.5 A	Comparison to Fluke 5522A Multiproduct Calibrator, Fluke 5500A/COIL 50-turn Coil
DC Clamp-on Ammeter ¹ (Non-Toroidal Type) Hall Effect Sensor	(1 to 5) kA	0.58 % of reading	Comparison to Fluke 5522A Multiproduct Calibrator, Current Coils
DC Voltage – Measure ¹	(0 to 200) mV (0.2 to 2) V (2 to 20) V (20 to 200) V (200 to 1050) V	7.7 μ V/V + 0.2 μ V 2.9 μ V/V + 0.3 μ V 2.9 μ V/V + 0.47 μ V 4.3 μ V/V + 30 μ V 4.4 μ V/V + 0.5 mV	Comparison to Fluke 8588A 8.5 Digit Multimeter
DC Voltage – Source ¹	(0 to 220) mV 220 mV to 2.2 V (2.2 to 11) V (11 to 22) V (22 to 220) V 220 V to 1100 V	$7.5 \mu\text{V/V} + 0.4 \mu\text{V}$ $5 \mu\text{V/V} + 0.7 \mu\text{V}$ $3.5 \mu\text{V/V} + 2.5 \mu\text{V}$ $3.5 \mu\text{V/V} + 4 \mu\text{V}$ $5 \mu\text{V/V} + 40 \mu\text{V}$ $6.5 \mu\text{V/V} + 0.4 \text{mV}$	Comparison to Fluke 5730A Multiproduct Calibrator

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 13 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(1 to 10) kV (10 to 20) kV (20 to 30) kV	0.039 % of reading + 0.092 V 0.038 % of reading + 2.4 V	
DC High Voltage – Measure ¹	(30 to 40) kV (40 to 50) kV	0.041 % of reading + 2.4 V 0.047 % of reading + 2.4 V 0.056 % of reading + 2.4 V	Comparison to Vitrek 4700 High Voltage Meter,
	(50 to 60) kV (60 to 70) kV (70 to 80) kV	0.071 % of reading + 2.4 V 0.089 % of reading + 2.4 V 0.12 % of reading + 2.5 V	Associated High Voltage Probes
	(80 to 90) kV (90 to 100) kV (0 to 2) Ω	0.15 % of reading + 2.5 V 0.17 % of reading + 2.5 V 16 $\mu\Omega/\Omega + 4 \mu\Omega$	
Resistance – Measure ¹	(2 to 20) Ω (20 to 200) Ω (0.2 to 2) $k\Omega$ (2 to 20) $k\Omega$	10 $\mu\Omega/\Omega$ + 14 $\mu\Omega$ 9.2 $\mu\Omega/\Omega$ + 47 $\mu\Omega$ 9.1 $\mu\Omega/\Omega$ + 0.47 $m\Omega$ 9.2 $\mu\Omega/\Omega$ + 4.7 $m\Omega$	Comparison to Fluke 8588A 8.5 Digit Multimeter
	(20 to $\frac{200}{N}$) $\frac{1}{N}$ (0.2 to 2) $\frac{1}{N}$ (2 to 20) $\frac{1}{N}$ (20 to 200) $\frac{1}{N}$ (0.2 to 2) $\frac{1}{N}$	9.3 $\mu\Omega/\Omega$ + 47 mΩ 11 $\mu\Omega/\Omega$ + 1 Ω 19 $\mu\Omega/\Omega$ + 0.1 kΩ 0.12 mΩ/Ω + 10 kΩ 0.13 % of reading + 1 MΩ	
	Up to 2 Ω (2 to 20) Ω (20 to 200) Ω	$17 \ \mu\Omega/\Omega + 4 \ \mu\Omega$ $10 \ \mu\Omega/\Omega + 14 \ \mu\Omega$ $17 \ \mu\Omega/\Omega + 0.2 \ m\Omega$	
Low Current Resistance – Measure ¹	$(0.2 \text{ to } 2) \text{ k}\Omega$ $(2 \text{ to } 20) \text{ k}\Omega$ $(20 \text{ to } 200) \text{ k}\Omega$ $(0.2 \text{ to } 2) \text{ M}\Omega$	$18 \ \mu\Omega/\Omega + 2 \ m\Omega$ $22 \ \mu\Omega/\Omega + 20 \ m\Omega$ $22 \ \mu\Omega/\Omega + 62 \ m\Omega$ $26 \ \mu\Omega/\Omega + 1 \ \Omega$	Comparison to Fluke 8588A 8.5 Digit Multimeter
	(2 to 20) M Ω (20 to 200) M Ω (0.2 to 2) G Ω	0.38 mΩ/Ω + 0.30 kΩ 0.13 % of reading + 10 kΩ 0.13 % of reading + 1.0 MΩ	
High Voltage Resistance – Measure ¹	(2 to 20) M Ω (20 to 200) M Ω (0.2 to 2) G Ω (2 to 20) G Ω	$\begin{array}{c} 17 \; \mu\Omega/\Omega + 10 \; \Omega \\ 68 \; \mu\Omega/\Omega + 0.1 \; k\Omega \\ 0.23 \; m\Omega/\Omega + 0.1 \; M\Omega \\ 0.13 \; \% \; of \; reading + 10 \; M\Omega \end{array}$	Comparison to Fluke 8588A 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Source ¹ (Simulation)	(0 to 11) Ω (11 to 33) Ω (33 to 111) Ω (110 to 330) Ω 330 Ω to 1.1 kΩ (1.1 to 3.3) kΩ (3.3 to 11) kΩ (11 to 33) kΩ (33 to 110) kΩ (110 to 330) kΩ 330 kΩ to 1.19 MΩ (1.1 to 3.3) MΩ (3.3 to 11) MΩ (1.1 to 33) MΩ (3.3 to 11) MΩ (110 to 330) MΩ (33 to 110) MΩ (110 to 330) MΩ (33 to 110) MΩ (110 to 330) MΩ (33 to 110) MΩ (110 to 330) MΩ	32 $\mu\Omega/\Omega + 0.78$ $m\Omega$ 24 $\mu\Omega/\Omega + 1.2$ $m\Omega$ 22 $\mu\Omega/\Omega + 1.1$ $m\Omega$ 22 $\mu\Omega/\Omega + 1.6$ $m\Omega$ 22 $\mu\Omega/\Omega + 0.16$ Ω 22 $\mu\Omega/\Omega + 0.16$ Ω 27 $\mu\Omega/\Omega + 1.6$ Ω 26 $\mu\Omega/\Omega + 1.6$ Ω 66 $\mu\Omega/\Omega + 23$ Ω 100 $\mu\Omega/\Omega + 39$ Ω 190 $\mu\Omega/\Omega + 1.9$ kΩ 410 $\mu\Omega/\Omega + 2.3$ kΩ 0.23 % of reading + 78 kΩ 12 % of reading + 0.39 MΩ	Comparison to Fluke 5522A Multiproduct Calibrator
Resistance – Source ¹ (Fixed-point Simulation)	0 Ω 1 Ω 1.9 Ω 10 Ω 19 Ω 100 Ω 190 Ω 1 kΩ 1.9 kΩ 10 kΩ 19 kΩ 100 kΩ 190 kΩ 1 MΩ 1.9 MΩ 1.9 MΩ 100 MΩ	40 μΩ 95 μΩ/Ω 95 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 10 μΩ/Ω 10 μΩ/Ω 6.5 μΩ/Ω 6.5 μΩ/Ω 6.5 μΩ/Ω 6.5 μΩ/Ω 8.5 μΩ/Ω 8.5 μΩ/Ω 13 μΩ/Ω 14 μΩ/Ω 17 μΩ/Ω 18 μΩ/Ω 19 μΩ/Ω 10 μΩ/Ω 11 μΩ/Ω 12 μΩ/Ω 13 μΩ/Ω 13 μΩ/Ω 13 μΩ/Ω 14 μΩ/Ω 16 μΩ/Ω 17 μΩ/Ω 18 μΩ/Ω 19 μΩ/Ω 19 μΩ/Ω 10 μΩ/Ω 10 μΩ/Ω 11 μΩ/Ω 12 μΩ/Ω 13 μΩ/Ω 13 μΩ/Ω 14 μΩ/Ω 15 μΩ/Ω	Comparison to Fluke 5730A Multiproduct Calibrator

1899 L Street NW, Suite 1100-A, Washington, DC 20036 414-501-5494 www.anab.org

ANSI National Accreditation Board

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Source ¹ (Fixed Artifacts)	1 mΩ 10 mΩ 100 mΩ 1 Ω	$\begin{array}{c} 0.16 \ \text{m}\Omega/\Omega \\ 0.13 \ \text{m}\Omega/\Omega \\ 0.1 \ \text{m}\Omega/\Omega \\ 43 \ \mu\Omega/\Omega \end{array}$	Comparison to Ohms Labs CS-100 Current Shunt; IET DCCS-0.01, IET DCCS-0.1, IET DCCS-1 Standard Resistors
Resistance – Source ¹ (Variable Artifact)	$\begin{array}{c} (100 \text{ to } 1\ 000)\ k\Omega \\ (1\ \text{to } 10)\ M\Omega \\ (10\ \text{to } 100)\ M\Omega \\ (100\ \text{to } 1\ 000)\ M\Omega \\ (1\ \text{to } 10)\ G\Omega \\ (10\ \text{to } 100)\ G\Omega \\ (10\ \text{to } 1\ 000)\ G\Omega \end{array}$	$\begin{array}{c} 0.037 \ \% \ \text{of reading} \\ 0.037 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ 0.12 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ 0.23 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ 0.59 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ 1.2 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ 1.2 \ \% \ \text{of reading} + 1.2 \ \mu\Omega/\Omega/V \\ \end{array}$	Comparison to IET HRRS-B-7-100k-10kV Decade Resistor
Capacitance – Measure ¹	Up to 2 nF (2 to 20) nF (20 to 200) nF (0.2 to 2) μF (2 to 20) μF (20 to 200) μF (0.2 to 2) mF (2 to 20) mF (2 to 20) mF (20 to 200) mF	0.19 % of reading + 1 pF 0.081 % of reading + 2 pF 0.049 % of reading + 10 pF 0.041 % of reading + 0.1 nF 0.042 % of reading + 1 nF 0.061 % of reading + 10 nF 0.061 % of reading + 0.1 μF 0.071 % of reading + 1 μF 0.072 % of reading + 10 μF	Comparison to Fluke 8588A 8.5 Digit Multimeter
Capacitance – Source ¹ (Simulation)	(220 to 400) pF 10 Hz to 10 kHz (0.4 to 1.1) nF 10 Hz to 10 kHz (1.1 to 3.3) nF 10 Hz to 3 kHz (3.3 to 11) nF 10 Hz to 3 kHz (11 to 33) nF 10 Hz to 1 kHz (33 to 110) nF 10 Hz to 1 kHz (110 to 330) nF 10 Hz to 1 kHz (110 to 600) Hz (1.1 to 3.3) µF (10 to 600) Hz	0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.21 % of reading + 7.8 pF 0.2 % of reading + 78 pF 0.21 % of reading + 78 pF 0.21 % of reading + 0.23 nF 0.21 % of reading + 0.78 nF 0.21 % of reading + 2.3 nF	Comparison to Fluke 5522A Multiproduct Calibrator

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 16 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ (Simulation)	(3.3 to 11) μF (10 to 150) Hz (11 to 33) μF (10 to 120) Hz (33 to 110) μF (10 to 80) Hz (110 to 330) μF DC to 50 Hz (0.33 to 1.1) mF DC to 20 Hz (1.1 to 3.3) mF DC to 6 Hz (3.3 to 11) mF DC to 2 Hz (11 to 33) mF DC to 0.6 Hz (33 to 110) mF DC to 0.2 Hz	0.2 % of reading + 7.8 nF 0.32 % of reading + 23 nF 0.37 % of reading + 78 nF 0.38 % of reading + 0.23 μF 0.35 % of reading + 0.78 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 7.8 μF 0.58 % of reading + 23 μF	Comparison to Fluke 5522A Multiproduct Calibrator
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C	1.2 °C 0.9 °C 0.71 °C 0.55 °C 0.45 °C 0.35 °C 0.24 °C 0.19 °C 0.21 °C 0.24 °C 0.27 °C 0.33 °C 0.37 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type E (-270 to -245) °C (-245 to -195) °C (-195 to -155) °C (-195 to -90) °C (-90 to 0) °C (0 to 15) °C (15 to 890) °C (890 to 1 000) °C Type J (-210 to -180) °C (-180 to -120) °C (-120 to -50) °C (-50 to 990) °C (990 to 1 200) °C Type K (-270 to -255) °C (-255 to -195) °C (-115 to -55) °C (-155 to 1 000) °C Type N (-270 to -260) °C (-260 to -200) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (-50 to -30) °C (160 to 1 300) °C Type R (-50 to -30) °C (-30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C	1.6 °C 0.24 °C 0.12 °C 0.095 °C 0.08 °C 0.064 °C 0.074 °C 0.15 °C 0.12 °C 0.093 °C 0.094 °C 2.5 °C 0.85 °C 0.16 °C 0.12 °C 0.087 °C 0.096 °C 5.4 °C 1.5 °C 0.29 °C 0.18 °C 0.12 °C 0.11 °C 0.12 °C 0.13 °C 0.14 °C 0.12 °C 0.11 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type S (-50 to -30) °C (-30 to 45) °C (45 to 105) °C (105 to 310) °C (310 to 615) °C (615 to 1 768) °C Type T (-270 to -255) °C (-255 to -240) °C (-240 to -210) °C (-180 to -40) °C (-40 to 100) °C (100 to 400) °C	0.76 °C 0.68 °C 0.49 °C 0.41 °C 0.35 °C 0.31 °C 1.9 °C 0.6 °C 0.36 °C 0.22 °C 0.15 °C 0.095 °C 0.08 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C (630 to 800) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (400 to 600) °C (600 to 630) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (600 to 630) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.039 °C 0.039 °C 0.054 °C 0.07 °C 0.078 °C 0.093 °C 0.18 °C 0.031 °C 0.031 °C 0.039 °C 0.10 °C 0.11 °C 0.11 °C 0.12 °C 0.039 °C 0.047 °C 0.062 °C 0.062 °C 0.062 °C 0.07 °C 0.085 °C	Comparison to Fluke 5522A Multiproduct Calibrator

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

ANAB

ANSI National Accreditation Board

Page 19 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	Pt 385, 1 000 Ω (-200 to -80) °C	0.023 °C	
	(-80 to 0) °C	0.023 °C	
	(0 to 100) °C	0.031 °C	
	(100 to 260) °C	0.039 °C	
	(260 to 300) °C	0.047 °C	
	(300 to 400) °C	0.054 °C	
	(400 to 600) °C	0.054 °C	
	(600 to 630) °C	0.18 °C	
	Pt 3916, 100 Ω		
	(-200 to -190) °C	0.19 °C	
	(-190 to -80) °C	0.031 °C	
	(-80 to 0) °C	0.039 °C	Comparison to Fluke 5522A Multiproduct Calibrate
	(0 to 100) °C	0.047 °C	
Electrical Simulation of	(100 to 260) °C	0.054 °C	
RTD Indicating Devices –	(260 to 300) °C	0.062 °C	
Source 1	(300 to 400) °C	0.07 °C	
Source	(400 to 600) °C	0.078 °C	Withiproduct Canorato
	(600 to 630) °C	0.018 °C	
	Pt 3926, 100 Ω		
	(-200 to -80) °C	0.039 °C	
	(-80 to 0) °C	0.039 °C	
	(0 to 100) °C	0.054 °C	
	(100 to 300) °C	0.07 °C	
	(300 to 400) °C	0.078 °C	
	(400 to 630) °C	0.093 °C	
	PtNi 385, 120 Ω		
	(-80 to 0) °C	0.062 °C	
	(0 to 100) °C	0.062 °C	
	(100 to 260) °C	0.1 °C	
	Cu 427, 10 Ω		
	(-100 to 260) °C	0.23 °C	

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Power – Source ¹			
330 μW to 330 mA	11 μW to 1.1 mW	0.024 % of reading	
·	(1.1 to 110) mW	0.02 <mark>7 % of reading</mark>	
	110 mW to 110 W	0.02 <mark>4 % of reading</mark>	
	(110 to 330) W	0.018 % of reading	
		-	Comparison to
330 mA to 3 A	11 μW to 110 mW	0.044 % of reading	Fluke 5522A
	110 mW to 990 W	0.053 % of reading	Multiproduct Calibrator
	1 W to 3 kW	0.009 6 % of reading	_
(3 to 20.5) A	99 mW to 0.99 W	0.088 % of reading	
	0.99 W to 6.8 kW	0.07 % of reading	
	6.8 W to 20.5 kW	0.04 % of reading	
AC Power – Source 1,2			
PF = 1	(10 + (5) 11		
(3.3 to 9) mA	(10 to 65) Hz	0.10.07 0 1	Comparison to
	(0.11 mW to 3) mW	0.13 % of reading	Fluke 5522A
(2 22)	3 mW-to 9 W	0.077 % of reading	Multiproduct Calibrator
(9 to 33) mA	, ,	0.000.07	
	(0.3 to 10) mW	0.089 % of reading	
12	10 mW to 33 W	0.077 % of reading	
AC Power – Source 1,2			
PF = 1	(40 65) ***	A CONTRACTOR OF THE PARTY OF TH	
(33 to 90) mA		0.054.07.011	
	(1 to 30) mW	0.071 % of reading	
	30 mW to 90 W	0.057 % of reading	
(90 to 330) mA		1	
	(3 to 100) mW	0.089 % of reading	
222	100 mW to 300 W	0.078 % of reading	
330 mA to 0.9 A			Comparison to
	(11 to 300) mW	0.071 % of reading	Fluke 5522A
,	300 mW to 900 W	0.081 % of reading	Multiproduct Calibrator
(0.9 to 2.2) A	(10 to 65) Hz		
	30 mW to 0.72 W	0.089 % of reading	
	0.72 W to 2 kW	0.079 % of reading	
(2.2 to 4.5) A	(10 to 65) Hz		
	80 mW to 1.4 W	0.088 % of reading	
	1.4 W to 4.5 kW	0.18 % of reading	
(4.5 to 20.5) A		- 1 1	
	150 mW to 6.7 W	0.17 % of reading	
	6.7 W to 20 kW	0.17 % of reading	

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 21 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase – Source ¹	(0 to 180)° (10 to 65) Hz (65 to 500) Hz 500 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 20) kHz	0.11° 0.2° 0.4° 1.9° 3.9° 7.8°	Comparison to Fluke 5522A Multiproduct Calibrator
Phase – Measure ¹	20 Hz to 50 kHz (0 to 360)°	0.19°	Comparison to Krohn Hite 6400A Phase Meter
into 1 MΩ load Time Markers into 50 Ω load	(-130 to 130) V 10 Hz to 100 kHz 1 mVp-p to 6.6 Vp-p 10 Hz to 1 kHz 1 mVp-p to 130 Vp-p (1 kHz to 10) kHz 1 mVp-p to 130 Vp-p	0.22 % of reading + 31 μV 0.12 % of reading + 31 μV 0.22 % of reading + 31 μV 0.22 % of reading + 31 μV 0.22 % of reading + 31 μV 0.000 22 % of reading 0.005 9 % of reading 0.009 8 % of reading 0.018 % of reading 0.041 % of reading 0.08 % of reading 0.16 % of reading 0.39 % of reading	Comparison to Fluke 5522A/SC1100 Multiproduct Calibrator
Rise Time into 50 Ω load Rate: 1 kHz to 2 MHz Rate: 2 MHz to 10 MHz	/ / /	50 ps 50 ps	

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 22 of 29

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes 1,3			
Leveled Sine Wave			
into 50 Ω load	5 mVp-p to 5.5 Vp-p		
	50 kHz	1.8 % o <mark>f readi</mark> ng + 0.23 mV	
	50 kHz to 100 MHz	2.8 % of reading + 0.23 mV	
	(100 to 300) MHz	3.2 % of reading + 0.23 mV	
	(300 to 600) MHz	4% of reading $+0.23$ mV	
	5.0 mVp-p to 3.5 Vp-p	1	
	600 MHz to 1.1 GHz	5.5 % of reading + 0.23 mV	
Bandwidth/Flatness (50 kHz Reference)			
` '	5 mVp-p to 5.5 Vp-p	- A	
	50 kHz to 100 MHz	1.4 % of reading + 78 μV	
	(100 to 300) MHz	1.8 % of reading + 78 μV	Campaniana
	(300 to 600) MHz	3.2% of reading $+78 \mu V$	Comparison to Fluke 5522A/SC1100
	5.0 mVp-p to 3.5 Vp-p		
	600 MHz to 1.1 GHz	4.0 % of reading + 78 μV	Multiproduct Calibrator
Input Impedance – Measure	$(40 \text{ to } 60) \Omega$	0.082 % of reading	
input impedance – weasure	$500 \text{ k}\Omega \text{ to } 1.5 \text{ M}\Omega$	0.082 % of reading	
	300 K22 to 1.3 W122	0.001 70 01 reading	
Input Capacitance – Measure	(5 to 50) pF	3.9 % of reading + 0.39 pF	
Oscilloscopes ^{1,3}			
Waveform Generator			
(Sine, Square, Triangle)			
Amplitude	10 Hz to 10 kHz		
into 50 Ω load	The state of the s	2.3% of reading + $78 \mu V$	
into 1 MΩ load		2.3 % of reading + 78 μV	
Frequency	10 Hz to 10 kHz	0.001 9 % of reading + 12 mHz	

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Calipers ¹ Travel (Outside, Inside, Depth, Step)	(0.05 to 1) in (1 to 9) in	(13 + 1 <i>L</i>) μin (8 + 5 <i>L</i>) μin	Comparisons to Gage Blocks,
Bepui, step)	(4 to 15) in (15 to 40) in	$(10 + 5L) \mu in$ $(11 + 5L) \mu in$	Long Gage Blocks
Jaw Flatness	Up to 1 inD	4.4 μin	Optical Flats
Jaw Parallelism	Up to 1 inD	34 μin	Gage Pins
Micrometers ¹ Travel (Outside, Inside, Depth)	(0.05 to 1) in (1 to 9) in	(13 + 1 <i>L</i>) μin (8 + 5 <i>L</i>) μin	Comparisons to Gage Blocks,
	(4 to 15) in (15 to 40) in	(10 + 5 <i>L</i>) μin (11 + 5 <i>L</i>) μin	Long Gage Blocks
Anvil Flatness	Up to 1 inD	4.4 μin	Optical Flats
Anvil Parallelism	Up to 1 inD	6.5 µin	Optical Parallels
Indicators ^{1,3} Digital, Dial, Drop, Test	(0 to 0.05) in	5.6 μin	Comparison to Universal Length Measuring Machine
Indicators ^{1,3} Digital, Dial, Drop, Test	up to 1 in (1 to 5) in	34 μin (60 + 2 <i>L</i>) μin	Comparison to Gage Blocks, Stand
Length Single Axis ³ Outside Dimension	(0 to 1) in (1 to 7) in (7 to 12) in	$(7.3 + 1L) \mu in$ $(5.3 + 3.3L) \mu in$ $(2 + 4L) \mu in$	Comparison to Universal Length
Inside Dimension	(0.04 to 1) in (1 to 2.5) in (2.5 to 10) in (10 to 14) in	$(10 + 1L) \mu in$ $(10 + 4L) \mu in$ $(15 + 3L) \mu in$ $(27 + 3L) \mu in$	Measuring Machine
Thread Wires	2 TPI to 120 TPI (0.008 33 to 0.5) in	12 μin	Comparison to Universal Length Measuring Machine

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Page 24 of 29

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Cylindrical Plug Gages ⁴ (Outside Diameter)	Up to 1 in (1 to 7) in	13 μ in $(11 + 3L) \mu$ in	Comparison to Universal Length Measuring Machine
Pin Gages (Outside Diameter)	(0.01 to 0.04) in (0.04 to 0.5) in (0.5 to 1) in (1 to 2) in	40 μin 39 μin 39 μin 41 μin	Non-contact Method using Laser Micrometer.
Optical Comparators ³ Length	Up to 8 in	(100 + 14 <i>L</i>) μin	Comparisons to Calibration Grids
Squareness	(0.04 to 1) in	$(120 + 1.5L) \mu in$	Calibration Grids
Thread Plug Gages ³ Pitch Diameter, 60° Thread	Up to 1 in (1 to 4) in (4 to 7) in	82 μin 84 μin 88 μin	Comparisons to Master Thread Wires, Super-micrometer® Model C
Major Diameter	Up to 1 in (1 to 7) in	36 μin (33 + 3 <i>L</i>) μin	
Step Height	Up to 1 in	62 μin	Gage Blocks, Test Stand
Thread Ring Gages Inner Pitch Diameter	Up to 1 in (1 to 4) in (4 to 7) in	88 μin 85 μin 93 μin	Tactile fit using Master Plug Gage
Ring Gages ³ Inside Diameter	(0.04 to 1) in (1 to 2.5) in (2.5 to 5) in	$(9 + 1L) \mu in$ $(10 + 3L) \mu in$ $(15 + 3L) \mu in$	Comparison to Universal Length Measuring Machine, Working Reference Rings
Tapered Thread Plug Pitch Diameter Taper	Up to 3 in	90 μin	Comparison to Universal Length Measuring Machine, Thread Wires

This Scope of Accreditation, version 005, was last updated on: 02 September 2025 and is valid only when accompanied by the Certificate.

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(5 to 50) ozf·in	1.6 % of reading	Comparison to
Torque Drivers, Indicators ¹	(50 to 200) ozf·in	0.98 <mark>% o</mark> f reading	CDI Torque Measuring
	(4 to 400) lbf·in	0.5 <mark>6% of</mark> reading	System
m w 1	4 11 6 1 4 600 11 6 6	0.440/01:	Comparison to
Torque Wrenches ¹	4 lbf·in to 600 lbf·ft	0.44% of reading	CDI Torque Measuring
			System ASTM E617 Class 1
	(1 to 5) g	40 μg	weights and internal
Scales and Balances ^{1,7}	(5 to 20) g	90 μg	calibration procedure
(SI)	20 g to 11 kg	0.000 31 % of reading	utilized for calibration of
	20 8 to 11 kg	olous 31 70 of reading	the weighing system.
			NIST Class F weights
Scales and Balances ^{1,7}		- A	and internal calibration
(Avoirdupois)	(5 to 350) lb	0.012 % of reading	procedure utilized for
(Avoildupois)	N N		the calibration of the
		J.	weighing system.
Pneumatic Pressure Devices			Comparison to
(Gauge)	$(-1 \text{ to } 1) \text{ inH}_2O$	0.001 2 inH ₂ O	Additel ADT761-LLP,
at 20 °C	((0), 3(); H-0	0.010/ C- 1: 0.002.2 : H.O.	Pressure Module
Pneumatic Pressure Devices	$(-60 \text{ to } -36) \text{ inH}_2\text{O}$	0.01% of reading + 0.003 3 inH ₂ O	Comparison to Fluke 6720A
(Gauge) at 20 °C	(-36 to 36) inH ₂ O (36 to 60) inH ₂ O	0.0048 inH ₂ O 0.01% of reading + 0.003 3 inH ₂ O	Pressure Controller
at 20 °C	(-14.5 to -4) psig	0.01 % of reading + 0.002 2 psi	Flessure Controller
	(-4 to 8.5) psig	0.002 7 psi	Comparison to
Pneumatic Pressure Devices	(8.5 to 100) psig	0.01% of reading + 0.003 2 psi	Fluke 6270A
(Gauge)	(100 to 300) psig	0.038 psi	Pressure Controller
	(300 to 1 000) psig	0.01 % of reading + 0.014 psi	
Hydraulic Pressure Devices (Gauge)	(1 000 to 10 000) psig	0.008 % of reading + 0.01 psi	Comparison to Deadweight Tester
	Up to 4.5 psia	0.001 6 psi	
	(4.5 to 15) psia	0.006 6 % of reading + 0.001 8 psi	Comparison to
Pneumatic Pressure Devices	(15 to 30) psia	0.006 6 % of reading + 0.003 2 psi	Fluke 6270A
(Absolute)	(30 to 100) psia	0.006 6 % of reading + 0.006 8 psi	Pressure Controller
	(100 to 300) psia	0.086 psi	
	(300 to 1 000) psia	0.006 6 % of reading + 0.068 psi	

ANAB ANSI National Accreditation Board

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Humidity – Measure ¹	(15 to 25) °C (10 to 90) %RH (90 to 98) %RH	1.3 %RH 2 %RH	Direct measure using Master Thermohygrometer
Humidity – Generate	(-10 to 15) °C (10 to 75) %RH (75 to 95) %RH (15 to 35) °C (10 to 95) %RH (35 to 70) °C (10 to 50) %RH (50 to 75) %RH (75 to 95) %RH	0.5 %RH 0.65 %RH 0.5 %RH 0.5 %RH 0.7 %RH 0.85 %RH	Comparison to Humidity Generator
Temperature – Measure ¹	(-195 to 155) °C (155 to 420) °C (420 to 660) °C	0.023 °C 0.033 °C 0.045 °C	Comparison to Fluke 1502A Temperature Readout, AccuMac AM1760 Secondary SPRT
Temperature – Source ¹	(-40 to 0) °C (0 to 100) °C (155 to 420) °C (420 to 660) °C	0.041 °C 0.02% of reading + 0.037°C 0.056% of reading + 0.064°C 0.071% of reading	Comparison to Fluke 1502A Temperature Readout, AccuMac AM1760 Secondary SPRT, Additel ADT878 Reference Dry Well Calibrator

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Reference	10 MHz	0.59 nHz/Hz	Comparison to Stanford Research FS725 Rubidium Frequency Oscillator

ANSI National Accreditation Board

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Period – Source	(1 to 100) s	58 ns/s	Comparison to Keysight 33250A Function/Arbitrary Waveform Generator, Stanford Research FS725 Rubidium Frequency Oscillator
Period – Measure	(1 to 100) s	45 μs	Comparison to HP 53132A Universal Counter, Stanford Research FS725 Rubidium Frequency Oscillator
Frequency – Source	1 Hz to 80 MHz	58 nHz/Hz	Comparison to Keysight 33250A Function/Arbitrary Waveform Generator, Stanford Research FS725 Rubidium Frequency Oscillator
Frequency – Measure	1 Hz to 10 kHz 10 kHz to 10 MHz (10 to 225) MHz	0.64 nHz/Hz + 4.5 μHz 0.64 nHz/Hz + 5 μHz 0.64 nHz/Hz	Comparison to HP 53132A Universal Counter, Stanford Research FS725 Rubidium Frequency
AC Duty Cycle – Source ¹ Square Wave: < 3.3 Vp-p Freq: 0.1 Hz to 100 kHz	(1 to 10) % Duty Cycle 10 μs to 100 s (10 to 49) % Duty Cycle 10 μs to 100 s 50 % Duty Cycle 10 μs to 100 s (51 to 90) % Duty Cycle 10 μs to 100 s (90 to 99) % Duty Cycle 10 μs to 100 s	0.62 % of reading + 78 ns 0.039 % of reading + 78 ns 0.001 6 % of reading + 78 ns 0.039 % of reading + 78 ns 0.62 % of reading + 78 ns	Comparison to Fluke 5522A Multiproduct Calibrator

ANAB

ANSI National Accreditation Board

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Non-Contact Rate of Rotation ⁵	(5 to 99.999) rpm (100.00 to 999.99) rpm (1 000.0 to 9 999.9) rpm (10 000 to 99 999) rpm (100 000 to 200 000) rpm	0.012 % of reading + 0.0012 rpm 0.012 % of reading + 0.012 rpm 0.012 % of reading + 0.12 rpm 0.014 % of reading + 1.2 rpm 0.014 % of reading + 12 rpm	Comparison to Optical Tachometer
Stopwatches/Timers	Up to 599 s/mon	58 ms/d	Comparison to Vibrograf TM-4500 Timometer

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. The uncertainties shown are for the most favorable conditions. There is an increase in uncertainty that corresponds to the laboratory's AC voltage and current uncertainties at different frequencies other than the ones shown. Power factors (PF) other than the one shown contribute to the power uncertainty. PF is related to the cosine of phase. Therefore, uncertainties track the laboratory's phase uncertainty closely at PF near one but are magnified heavily as PF approaches zero. The lab may also report reactive power, apparent power, and power factor under this accreditation. If needed, contact the laboratory for more information regarding uncertainties at frequency and power factor combinations other than the ones shown.
- 3. Dimensional Lab Environment ± 2 °F.
- 4. The stated uncertainty is the laboratory's ability to source a fast rise pulse that is approximately 250 ps. In the typical application of measuring rise time of an oscilloscope, this value is one of the contributing factors, but other factors are derived from the DUT.
- 5. D = diameter; L = length in inches; rpm = revolutions per minute.
- 6. The CMC for scales and balances is highly dependent upon the resolution of the unit under test. The CMC presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
- 7. The CMC presented here does not include the Resolution of the Device Under Test (DUT). The Resolution will be added at the time of calibration in the Measurement Uncertainty (MU).
- 8. Unless otherwise specified in the far-right column, the calibration method/procedure utilized by the laboratory was developed internally.
- 9. The legal entity of this location is Transcat, Inc.

Jason Stine, Vice President

