

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat – Denver 3251 Lewiston St., Suite 12 Aurora, CO 80011

Fulfills the requirements of

ISO/IEC 17025:2017

and the national standards

ANSI/NCSL Z540-1-1994 (R2002) AND ANSI/NCSL Z540.3-2006 (R2013)

In the fields of

CALIBRATION & DIMENSIONAL MEASUREMENT

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 07 September 2027 Certificate Number: AC-2489.10

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002) ANSI/NCSL Z540.3-2006 (R2013)

Transcat – Denver

3251 Lewiston St., Suite 12
Aurora, CO 80011
Dominic Holleman dominic.holleman@transcat.com

CALIBRATION AND DIMENSIONAL MEASUREMENT

ISO/IEC 17025 Accreditation Granted: 29 August 2025

Certificate Number: AC-2489.10 Certificate Expiry Date: 07 September 2027

CALIBRATION

Acoustics and Vibration

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0.5 to 1) Hz	1.1 % of reading	
	(1 to 5) Hz	0.8 % of reading	
	(5 to 10) Hz	0.8 % of reading	
	(10 to 99) Hz	1.2 % of reading	
Acceleration	100 Hz	0.75 % of reading	Comparison to
Acceleration	(101 to 920) Hz	1 % of reading	Master Accelerometer
	(921 to 5 000) Hz	1.4 % of reading	
	(5 001 to 10 000) Hz	1.8 % of reading	
	(10 to 15) kHz	2.2 % of reading	
	(15 to 20) kHz	2.8 % of reading	

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	4 pH	0.012 pH	Comparison to
pH Meters	7 pH	0.011 pH	Accredited pH Solutions
	10 pH	0.012 pH	Accredited ph Solutions

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	1 μS	0.3 μS	
	10 μS	0.3 μS	
	100 μS	2.1 μS	
	1 000 μS	5 μS	Comparison to
Conductivity Meters	1 413 μS	4 μS	Accredited Conductivity
·	10 000 μS	44 μS	Solutions
	100 000 μS	330 μS	
	150 000 μS	570 μS	
	200 000 μS	670 μS	

Electrical – DC/Low Frequency

Electrical – De/Low Freque	ncy		
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Sine Wave Flatness ¹	Up to 3 V 10 Hz to 1 MHz (1 to 10) MHz (10 to 30) MHz (30 to 50) MHz (50 to 80) MHz (80 to 100) MHz	0.06 % of reading 0.1 % of reading 0.18 % of reading 0.41 % of reading 0.71 % of reading 0.84 % of reading	Comparison to Thermal Converters, HP 3458A 8.5 Digit Multimeter
DC Current – Source ¹	Up to 2 pA (2 to 20) pA (20 to 200) pA (0.2 to 2) nA (2 to 20) nA (20 to 200) nA (0.2 to 2) µA	0.8 % of reading + 10 fA 0.44 % of reading + 10 fA 0.3 % of reading + 30 fA 0.077 % of reading + 100 fA 0.076 % of reading + 1 pA 0.041 % of reading + 10 pA 0.029 % of reading + 0.1 nA	Comparison to Keithley 263 Calibrator/Source
DC Current – Source ¹	(2 to 220) µA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	40 μA/A + 6 nA 36 μA/A + 7 nA 35 μA/A + 40 nA 48 μA/A + 0.7 μA 80 μA/A + 12 μA	Comparison to Fluke 5730A Multiproduct Calibrator
DC Current – Source ¹	(2.2 to 11) A	0.036 % of reading + 0.48 mA	Comparison to Fluke 5730A/5725A Multiproduct Calibrator with Amplifier

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source ¹	(11 to 20.5) A	0.082 % of reading + 0.75 mA	Comparison to Fluke 5520A Multiproduct Calibrator
DC Current – Source ¹	(1 to 10) A (10 to 100) A (100 to 300) A	0.01 % of reading 0.06 % of reading 0.12 % of reading	Comparison to Guideline 9211 Multi-tap DC Current Shunt, Current Source
DC Clamp-on Ammeters (Non-Toroidal Type) Transformer Type Sensor ¹	(20 to 150) A (150 to 1 000) A	0.5 % of reading + 0.14 A 0.51 % of reading + 0.5 A	Comparison to Fluke 5520A Multiproduct Calibrator, 5500A/COIL 50-turn Coil
DC Current – Measure ¹	Up to 2 pA (2 to 20) pA (20 to 200) pA (0.2 to 2) nA (2 to 20) nA (20 to 200) nA	2.1 % of reading + 6.6 fA 1.9 % of reading + 7 fA 1.9 % of reading + 10 fA 0.3 % of reading + 0.5 pA 0.3 % of reading + 1 pA 0.3 % of reading + 10 pA	Comparison to Keithley 617 Programmable Electrometer
DC Current – Measure ¹	(0.2 to 1) μA (1 to 10) μA (10 to 100) μA (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	25 μ A/A + 46 pA 25 μ A/A + 0.12 nA 33 μ A/A + 0.92 nA 29 μ A/A + 5.8 nA 29 μ A/A + 58 nA 46 μ A/A + 0.58 μ A 0.013 % of reading + 12 μ A	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
DC Current – Measure ¹	(1 to 10) A (10 to 100) A (100 to 300) A	0.01 % of reading 0.06 % of reading 0.12 % of reading	Comparison to Guideline 9211 Multi-tap DC Current Shunt, Digital Multimeter
AC Current – Source ¹	Up to 220 μA (10 to 20) Hz (20 to 40 Hz) 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.01 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 65 nA	Comparison to Fluke 5730A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(0.22 to 2.2) mA	0.025 % of reading + 40 nA 0.016 % of reading + 35 nA 0.01 % of reading + 35 nA 0.02 % of reading + 0.11 μA 0.11 % of reading + 0.65 μA 0.025 % of reading + 0.4 μA 0.016 % of reading + 0.35 μA 0.01 % of reading + 0.35 μA 0.02 % of reading + 0.55 μA 0.11 % of reading + 5 μA 0.026 % of reading + 3.5 μA 0.016 % of reading + 3.5 μA 0.016 % of reading + 3.5 μA 0.01 % of reading + 3.5 μA 0.11 % of reading + 10 μA 0.024 % of reading + 35 μA 0.045 % of reading + 0.16 mA 0.18 % of reading + 0.1 mA 0.06 % of reading + 0.1 mA 0.6 % of reading + 1 mA 2.5 % of reading + 5 mA	Comparison to Fluke 5730A Multiproduct Calibrator
AC Current – Source ¹	(3 to 11) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	0.06 % of reading + 2 mA 0.1 % of reading + 2 mA 3 % of reading + 2 mA	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier
AC Current – Source ¹	(11 to 20.5) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	0.12 % of reading + 5 mA 0.15 % of reading + 5 mA 3 % of reading + 5 mA	Comparison to Fluke 5520A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(29 to 330) μA (10 to 30) kHz (0.33 to 3.3) mA	1.2 % of reading + 0.4 μA	
AC Current – Source ¹ Extended Frequency Ranges	(10 to 30) kHz (3.3 to 33) mA	0.78 % of reading + 0.6 μA	Comparison to Fluke 5520A
	(10 to 30) kHz (33 to 330) mA	0.31 % of reading + 4 μ A	Multiproduct Calibrator
	(10 to 30) kHz	0.31 % of reading + 0.2 mA	
AC Clamp-on Ammeters (Toroidal Type) Transformer Type Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz	0.3 % of reading + 26 mA 0.83 % of reading + 47 mA 0.35 % of reading + 0.12 A	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 5500A/COIL
	(65 to 440) Hz (20 to 150) A	1.1 % of reading + 0.22 A	50-turn Coil
AC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(45z to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.57 % of reading + 0.25 A 1 % of reading + 0.25 A 0.6 % of reading + 0.9 A 1.3 % of reading + 0.92 A	Comparison to Fluke 5520A Multiproduct Calibrator, Fluke 5500A/COIL 50-turn Coil
AC Current – Measure ¹	Up to 100 μA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 1 kHz (0.1 to 1) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (1 to 10) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (10 to 100) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (10 to 100) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz	0.46 % of reading + 35 nA 0.17 % of reading + 35 nA 0.072 % of reading + 0.23 μA 0.17 % of reading + 0.23 μA 0.07 % of reading + 0.23 μA 0.038 % of reading + 0.23 μA 0.17 % of reading + 2.3 μA 0.17 % of reading + 2.3 μA 0.071 % of reading + 2.3 μA 0.038 % of reading + 2.3 μA 0.038 % of reading + 23 μA 0.037 % of reading + 23 μA 0.071 % of reading + 23 μA 0.071 % of reading + 23 μA 0.071 % of reading + 23 μA	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(0.1 to 1) A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz	0.46 % of reading + 0.23 mA 0.19 % of reading + 0.23 mA 0.097 % of reading + 0.23 mA 0.12 % of reading + 0.23 mA	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
AC Current – Measure ¹	(1 to 20) A (50 to 100) Hz (100 to 300) Hz 300 Hz to 1 kHz (1 to 3) kHz (3 to 4) kHz (4 to 5) kHz	0.02 % of reading 0.03 % of reading 0.03 % of reading 0.06 % of reading 0.07 % of reading 0.09 % of reading	Comparison to Fluke Y5020 Precision AC Current Shunt, Precision Digital Multimeter
AC Current – Measure ¹	(20 to 100) A (50 to 60) Hz 400 Hz 1 kHz	0.022 % of reading + 5 mA 0.026 % of reading + 5 mA 0.11 % of reading + 1.3 mA	Comparison to AC Current Shunt, Agilent 3458A 8.5 Digit Multimeter
AC Resistance – Measure ¹	1 kHz 20 Ω to 100 kΩ	0.039 % of reading + $10 \text{ m}\Omega$	Comparison to General Radio 1689 Precision LCR Meter
AC Resistance – Measure	$(0.1 \text{ to } 15) \Omega$ $(0.1 \text{ to } 15) \Omega$ $(0.1 \text{ to } 15) \Omega$ $(0.1 \text{ to } 100 \text{ kHz})$ $(15 \text{ to } 420) \Omega$ $(0.42 \text{ to } 32) \text{ k}\Omega$ $(0.42 \text{ to } 32) \text{ k}\Omega$ $(0.42 \text{ to } 320) \text{ k}\Omega$ $(0.32 \text{ to } 10) \text{ M}\Omega$	0.12 % of reading 0.06 % of reading 0.06 % of reading 0.06 % of reading 0.12 % of reading	Comparison to Agilent 4284A Precision LCR Meter
AC Resistance – Measure	0.1 Ω 1 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ	0.17 % of reading 0.12 % of reading 0.12 % of reading 0.05 % of reading 0.05 % of reading 0.13 % of reading 0.26 % of reading	Comparison to Impedance Standards
DC Resistance – Source ¹ (Fixed Artifacts)	$\begin{array}{c} 333 \; \mu\Omega \\ 1 \; m\Omega \\ 10 \; m\Omega \\ 100 \; m\Omega \end{array}$	0.12 % of reading 0.06 % of reading 0.01 % of reading 0.01 % of reading	Comparison to Guideline 9211 Precision Multi-tap DC Current Shunt

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Resistance – Source ¹ (Artifacts)	1 Ω 10 kΩ	10 μΩ 54 mΩ	Comparison to Fluke 742A Resistance Standard
DC High Resistance – Source ¹ (Variable Artifact)	1 GΩ 10 GΩ 100 GΩ 1 TΩ	0.2 % of reading 0.5 % of reading 0.55 % of reading 0.56 % of reading	Comparison to IET Labs HRRS-Q-8-100k-10 kV Precision Decade Resistor
DC Resistance – Source ¹ (Fixed Artifacts)	0Ω 1Ω 1.9Ω 10Ω 19Ω 100Ω 190Ω $1 k\Omega$ $1.9 k\Omega$ $10 k\Omega$ $1 9 k\Omega$ $100 k\Omega$ $1 9 M\Omega$ $100 M\Omega$	40 $\mu\Omega$ 95 $\mu\Omega/\Omega$ 95 $\mu\Omega/\Omega$ 95 $\mu\Omega/\Omega$ 23 $\mu\Omega/\Omega$ 23 $\mu\Omega/\Omega$ 10 $\mu\Omega/\Omega$ 10 $\mu\Omega/\Omega$ 6.5 $\mu\Omega/\Omega$ 6.5 $\mu\Omega/\Omega$ 6.5 $\mu\Omega/\Omega$ 6.5 $\mu\Omega/\Omega$ 8.5 $\mu\Omega/\Omega$ 8.5 $\mu\Omega/\Omega$ 13 $\mu\Omega/\Omega$ 18 $\mu\Omega/\Omega$ 40 $\mu\Omega/\Omega$	Comparison to Fluke 5730A Multiproduct Calibrator
DC Resistance – Measure ¹	$\begin{array}{c} (0 \text{ to } 10) \ \Omega \\ (10 \text{ to } 100) \ \Omega \\ (0.1 \text{ to } 1) \ k\Omega \\ (1 \text{ to } 10) \ k\Omega \\ (10 \text{ to } 100) \ k\Omega \\ (0.1 \text{ to } 1) \ M\Omega \\ (1 \text{ to } 10) \ M\Omega \\ (10 \text{ to } 100) \ M\Omega \\ (0.1 \text{ to } 1) \ G\Omega \end{array}$	18 $\mu\Omega/\Omega + 58 \mu\Omega$ 15 $\mu\Omega/\Omega + 0.58 m\Omega$ 13 $\mu\Omega/\Omega + 0.58 m\Omega$ 12 $\mu\Omega/\Omega + 5.8 m\Omega$ 13 $\mu\Omega/\Omega + 5.8 m\Omega$ 13 $\mu\Omega/\Omega + 5.8 m\Omega$ 21 $\mu\Omega/\Omega + 2.3 \Omega$ 62 $\mu\Omega/\Omega + 0.12 k\Omega$ 0.059 % of reading + 1.2 kΩ 0.82 % of reading + 12 kΩ	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter characterized with Standard Resistors.
DC High Resistance – Measure ¹	(1 to 2) $G\Omega$ (2 to 20) $G\Omega$ (20 to 200) $G\Omega$	1.7 % of reading + 0.1 MΩ 1.7 % of reading + 1 MΩ 1.8 % of reading + 10 MΩ	Comparison to Keithley 617 Electrometer

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V	7.5 μ V/V + 0.4 μ V 5 μ V/V + 0.7 μ V 3.5 μ V/V + 2.5 μ V 3.5 μ V/V + 4 μ V 5 μ V/V + 40 μ V	Comparison to Fluke 5730A Multiproduct Calibrator
DC Voltage – Source ¹	(220 to 1 100) V	$6.5 \mu\text{V/V} + 0.4 \text{mV}$	Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier
DC High Voltage – Source ¹	(1.1 to 20) kV (20 to 36) kV	0.096 % of reading + 1.1 V 0.096 % of reading + 10 V	Comparison to High Voltage Source, Vitrek 4700 Digital HV Meter, Vitrek HVL-100 High Voltage Probe
DC Voltage – Measure ¹	(0 to 100) mV (0.1 to 10) V (10 to 100) V (100 to 500) V (500 to 800) V (800 to 1 000) V	8.3 μ V/V + 0.58 μ V 5.3 μ V/V + 0.58 μ V 7.7 μ V/V + 35 μ V 15 μ V/V + 0.12 mV 18 μ V/V + 0.12 mV 21 μ V/V + 0.12 mV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
DC High Voltage – Measure ¹	(1 to 5) kV (5 to 10) kV (10 to 20) kV (20 to 50) kV (50 to 70) kV (70 to 100) kV	0.04 % of reading + 0.26 V 0.04 % of reading + 1.7 V 0.065 % of reading + 1.1 V 0.066 % of reading + 10 V 0.067 % of reading + 28 V 0.069 % of reading + 81 V	Comparison to Vitrek 4700 Digital HV Meter, Associated High Voltage Probes
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 5 μ V 0.11 % of reading + 10 μ V 0.14 % of reading + 20 μ V 0.27 % of reading + 20 μ V	Comparison to Fluke 5730A Multiproduct Calibrator

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 8 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz	0.024 % of reading + 4 μV 0.009 % of reading + 4 μV 0.008 % of reading + 4 μV 0.02 % of reading + 4 μV	
	(50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (22 to 220) mV	0.05 % of reading + 5 μV 0.11 % of reading + 10 μV 0.14 % of reading + 20 μV 0.27 % of reading + 20 μV	
	(10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz	0.024 % of reading + 12 μV 0.009 % of reading + 7 μV 0.005 7 % of reading + 7 μV 0.012 % of reading + 7 μV	Comparison to Fluke 5730A
AC Voltage – Source ¹	(50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (0.22 to 2.2) V	0.031 % of reading + 17 μV 0.066 % of reading + 20 μV 0.14 % of reading + 25 μV 0.27 % of reading + 45 μV	
	(0.22 to 2.2) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz	0.024 % of reading + 40 μV 0.009 % of reading + 15 μV 0.004 2 % of reading + 8 μV 0.006 7 % of reading + 10 μV	Multiproduct Calibrator
	(50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz	0.008 5 % of reading + 30 μV 0.034 % of reading + 80 μV 0.1 % of reading + 0.2 mV 0.17 % of reading + 0.3 mV	
	(2.2 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz	0.024 % of reading + 0.4 mV 0.009 % of reading + 0.15 mV 0.004 2 % of reading + 0.05 mV	
	(20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz	0.006 7 % of reading + 0.1 mV 0.008 3 % of reading + 0.2 mV 0.026 % of reading + 0.6 mV 0.1 % of reading + 2 mV 0.15 % of reading + 3.2 mV	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ AC Voltage – Source ¹	(22 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (220 to 750) V (30 to 50) kHz (50 to 100) kHz (220 to 1 100) V 40 Hz to 1 kHz	0.024 % of reading + 4 mV 0.009 % of reading + 1.5 mV 0.005 2 % of reading + 0.6 mV 0.008 % of reading + 1 mV 0.015 % of reading + 2.5 mV 0.09 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 80 mV 0.06 % of reading + 11 mV 0.23 % of reading + 45 mV	Comparison to Fluke 5730A Multiproduct Calibrator Comparison to Fluke 5730A Multiproduct Calibrator, Fluke 5725A
	(1 to 20) kHz (20 to 30) kHz Up to 1 mV	0.017 % of reading + 6 mV 0.06 % of reading + 11 mV	Amplifier
AC Voltage – Measure ¹	100 kHz to 1 MHz (1 to 3) MHz (3 to 10) MHz (10 to 20) MHz (1 to 3) mV 100 kHz to 1 MHz (1 to 3) MHz (3 to 10) MHz (10 to 20) MHz (3 to 100) mV 100 kHz to 1 MHz (1 to 3) MHz (3 to 10) MHz (1 to 3) MHz (3 to 10) MHz (20 to 30) MHz	1.8 % of reading + 2.4 μV 3.5 % of reading + 2.4 μV 9.3 % of reading + 2.4 μV 23 % of reading + 2.4 μV 0.97 % of reading + 2 μV 3.5 % of reading + 2 μV 9.3 % of reading + 2 μV 23 % of reading + 2 μV 1.8 % of reading + 3 μV 1.8 % of reading + 3 μV 0.9 % of reading + 3 μV 0.9 % of reading + 3 μV 1.9 % of reading + 3 μV 1.9 % of reading + 3 μV 1.9 % of reading + 3 μV	Comparison to Rohde & Schwarz URE3 RMS Voltmeter
AC Voltage – Measure ¹	Up to 10 mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 4) MHz	0.04 % of reading + 3.5 μV 0.03 % of reading + 1.2 μV 0.04 % of reading + 1.2 μV 0.15 % of reading + 1.2 μV 0.59 % of reading + 1.2 μV 4.6 % of reading + 2.3 μV 1.5 % of reading + 5.8 μV 8.1 % of reading + 8.1 μV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 10 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(10 to 100) mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (0.1 to 1) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (2 to 4) MHz (1 to 2) MHz (2 to 4) MHz (1 to 2) MHz (2 to 4) MHz (4 to 8) MHz (8 to 10) MHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (1 to 20) kHz (1 to 20) kHz (20 to 50) kHz (20 to 50) kHz (300 kHz to 1 MHz (1 to 20) MHz (1 to 20) MHz (20 to 50) kHz (300 kHz to 1 MHz (1 to 20) MHz (300 kHz to 1 MHz (4 to 8) MHz (50 to 100) kHz (100 to 300) kHz	0.013 % of reading + 4 μV 0.009 5 % of reading + 2 μV 0.017 % of reading + 2 μV 0.037 % of reading + 2 μV 0.093 % of reading + 2 μV 0.36 % of reading + 10 μV 1.2 % of reading + 10 μV 1.8 % of reading + 12 μV 4.7 % of reading + 81 μV 4.7 % of reading + 92 μV 17 % of reading + 0.12 mV 0.008 8 % of reading + 23 μV 0.017 % of reading + 23 μV 0.036 % of reading + 23 μV 0.093 % of reading + 0.12 mV 1.2 % of reading + 0.12 mV 1.2 % of reading + 0.12 mV 1.8 % of reading + 0.12 mV 1.7 % of reading + 0.12 mV 1.8 % of reading + 0.23 mV 0.023 % of reading + 0.23 mV 0.017 % of reading + 0.23 mV 0.017 % of reading + 0.23 mV 0.036 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.8 % of reading + 1.2 mV 1.8 % of reading + 1.2 mV 1.9 % of reading + 1.2 mV 1.10 % of reading + 1.2 mV 1.11 % of reading + 1.2 mV 1.12 % of reading + 1.2 mV 1.2 % of reading + 1.2 mV 1.3 % of reading + 1.2 mV 1.4 % of reading + 1.2 mV 1.5 % of reading + 1.2 mV 1.6 % of reading + 1.2 mV 1.7 % of reading + 1.2 mV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(10 to 100) V (1 to 40) Hz 40Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (100 to 700) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz	0.024 % of reading + 4.6 mV 0.024 % of reading + 2.3 mV 0.024 % of reading + 2.3 mV 0.041 % of reading + 2.3 mV 0.14 % of reading + 2.3 mV 0.46 % of reading + 12 mV 1.7 % of reading + 12 mV 0.048 % of reading + 46 mV 0.048 % of reading + 23 mV 0.071 % of reading + 23 mV 0.19 % of reading + 23 mV 0.35 % of reading + 23 mV	Comparison to Agilent 3458A Opt 002 8.5 Digit Multimeter
AC High Voltage – Measure ¹	(0.7 to 5) kV (10 to 200) Hz (200 to 450) Hz (5 to 10) kV (10 to 200) Hz (200 to 450) Hz (10 to 20) kV (30 to 70) Hz (70 to 200) Hz (200 to 450) Hz (200 to 50) kV (30 to 70) Hz (70 to 200) Hz (200 to 450) Hz (200 to 450) Hz (200 to 450) Hz (30 to 70) kV (30 to 70) kV (30 to 70) Hz (70 to 200) Hz (50 to 70) kV (30 to 70) Hz (70 to 200) Hz	0.14 % of reading + 0.34 V 0.47 % of reading + 0.34 V 0.16 % of reading + 1.9 V 0.47 % of reading + 1.9 V 0.16 % of reading + 1.4 V 1.2 % of reading + 1.4 V 2.9 % of reading + 1.8 V 0.16 % of reading + 11 V 1.2 % of reading + 21 V 0.16 % of reading + 28 V 1.2 % of reading + 28 V	Comparison to Vitrek 4700 Digital HV Meter, Associated High Voltage Probes
Capacitance – Source ¹ (Fixed Artifacts)	1 kHz (0.1 to 0.5) nF 0.5 nF to 1.4 μF	0.59 pF 0.12 % of reading + 18 fF	Comparison to Arco SS32 Capacitor Set

1 pF	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(1 to 10) kHz	*	1 kHz to 1 MHz (1 to 2) MHz (2 to 3) MHz (3 to 4) MHz (4 to 5) MHz (5 to 10) MHz (10 to 13) MHz 10 pF 1 kHz to 5 MHz (5 to 10) MHz (10 to 13) MHz 100 pF 1 kHz to 3 MHz (3 to 4) MHz (4 to 5) MHz (5 to 10) MHz (10 to 13) MHz 1000 pF 20 Hz to 1 MHz (10 to 13) MHz 1 000 pF 20 Hz to 1 MHz (1 to 2) MHz (2 to 3) MHz (3 to 4) MHz (4 to 5) MHz (5 to 10) MHz (10 to 13) MHz 10 nF 120 Hz to 10 kHz (10 to 100) kHz 100 nF 120 Hz to 10 kHz (10 to 100) kHz 11µF 120 Hz to 10 kHz (10 to 100) kHz 11µF 120 Hz to 10 kHz (10 to 100) kHz	0.62 fF 1.1 fF 1.6 fF 2.2 fF 6.3 fF 9.3 fF 2.5 fF 3.7 fF 4.5 fF 27 fF 31 fF 39 fF 86 fF 0.13 pF 0.27 pF 0.43 pF 0.74 pF 1.1 pF 1.6 pF 4.8 pF 7 pF 2.4 pF 2.9 pF 2.5 pF 30 pF 0.37 nF 1.1 nF	Comparison to HP 16380A Series,

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 13 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	1 pF	0.000.22	
	1 kHz to 1 MHz	0.000 23	
	(1 to 2) MHz	0.000 15	
	(2 to 3) MHz	0.000 23	
	(3 to 4) MHz	0.000 35	
	(4 to 5) MHz	0.000 50	
	(5 to 10) MHz	0.001 4	
	(10 to 13) MHz	0.002 1	
	10 pF	///	
	1 kHz to 5 MHz	0.000 15	
	(5 to 10) MHz	0.000 2	
	(10 to 13) MHz	0.000 24	
	100 pF	1	
	1 kHz to 3 MHz	0.000 12	
	(3 to 4) MHz	0.000 13	
	(4 to 5) MHz	0.000 15	
	(5 to 10) MHz	0.000 4	Comparison to HP 16380A Series,
Dissipation Factor – Source ⁴	(10 to 13) MHz	0.000 6	
(Fixed Artifacts)	1 000 pF	/	HP 16830C Series
	20 Hz to 1 MHz	0.000 12	Standard Air Capacitor Se
	(1 to 2) MHz	0.000 15	
	(2 to 3) MHz	0.000 25	
	(3 to 4) MHz	0.000 38	
	(4 to 5) MHz	0.000 53	
	(5 to 10) MHz	0.001 5	
	(10 to 13) MHz	0.002 1	
	10 nF		
	120 Hz to 100 kHz	0.000 23	
	100 nF		
	120 Hz to 100 kHz	0.000 29	
	1 μF		
	120 Hz to 100 kHz	0.000 41	
	10 μF		
	20 Hz to 1 kHz	0.000 29	
	(1 to 10) kHz	0.000 7	
	(10 to 100) kHz	0.001 8	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ (Simulated)	10 Hz to 10 kHz (0.19 to 1.1) nF 10 Hz to 3 kHz (1.1 to 3.3) nF 10 Hz to 1 kHz (3.3 to 11) nF (11 to 110) nF (110 to 330) nF (10 to 600) Hz (0.33 to 1.1) μF (10 to 300) Hz (1.1 to 3.3) μF (10 to 150) Hz (3.3 to 11) μF (10 to 120) Hz (11 to 33) μF (10 to 80) Hz (33 to 110) μF DC to 50 Hz (10 to 330) μF DC to 20 Hz (0.33 to 1.1) mF DC to 6 Hz (1.1 to 3.3) mF DC to 2 Hz (3.3 to 11) mF DC to 6 Hz (1.1 to 3.3) mF DC to 2 Hz (110 to 330) mF DC to 2 Hz (3.3 to 11) mF DC to 2 Hz (3.3 to 11) mF DC to 0.6 Hz (11 to 33) mF DC to 0.2 Hz	0.39 % of reading + 7.8 pF 0.39 % of reading + 7.8 pF 0.2 % of reading + 7.8 pF 0.2 % of reading + 78 pF 0.2 % of reading + 0.23 nF 0.2 % of reading + 0.78 nF 0.2 % of reading + 2.3 nF 0.2 % of reading + 7.8 nF 0.32 % of reading + 78 nF 0.35 % of reading + 78 nF 0.37 % of reading + 0.23 μF 0.37 % of reading + 0.78 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 7.8 μF 0.35 % of reading + 7.8 μF	Comparison to Fluke 5520A Multiproduct Calibrator
Capacitance – Measure ¹	(33 to 110) mF 1 kHz Up to 10 pF (10 to 100) pF (0.1 to 1) μF (1 to 100) μF (0.1 to 1) mF	0.85 % of reading + 78 μF 0.47 % of reading + 0.05 pF 0.058 % of reading + 0.05 pF 0.024 % of reading + 0.05 pF 0.04 % of reading 0.24 % of reading	Comparison to General Radio 1689 Precision LCR Meter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Measure ¹	1 MHz (10 to 90) pF 90 pF to 10 nF 100 kHz (12 to 90) pF 90 pF to 100 nF (0.1 to 100) μF 10 kHz (10 to 80) pF 80 pF to 1 μF 400 Hz 10 nF to 10 μF (100 to 120) Hz 10 nF to 100 μF 100 μF to 12 mF	0.12 % of reading 0.06 % of reading 0.12 % of reading 0.06 % of reading 0.12 % of reading 0.12 % of reading 0.06 % of reading 0.06 % of reading 0.06 % of reading 0.06 % of reading 0.12 % of reading	Comparison to Agilent 4284A Precision LCR Meter
Inductance – Source ¹	1 kHz	oviz , o o i i suamig	Comparison to
(Artifact)	100 mH	0.14 mH	Standard Inductor
Inductance – Measure ¹	100 Hz to 1 kHz (1 to 100) mH (0.1 to 10) H 400 Hz 5 μH to 5 mH 5 mH to 10 H (100 to 120) Hz (0.12 to 20) mH 20 mH to 10 H 1 kHz 1 μH to 1 mH 10 kHz 5 nH to 120 μH 120 μH to 100 mH	0.04 % of reading + 0.1 μH 0.057 % of reading + 1.4 μH 0.12 % of reading 0.06 % of reading 0.12 % of reading 0.06 % of reading 0.12 % of reading 0.12 % of reading 0.12 % of reading 0.10 % of reading	Comparison to Agilent 4284A Precision LCR Meter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ¹			
Amplitude – DC			
into 50 Ω load	(-5 to 5) V	0.023% of reading + 19 μ V	
into 1 MΩ load	(-200 to 200) V	0.023 % of reading + 19 μ V	
Amplitude – Square Wave Rate: 10 Hz to 10 kHz			
into 50 Ω load	40 μVp-p to 1 mVp-p 1 mVp-p to 5 Vp-p	0.78 % of reading + 7.8 μV 0.078 % of reading + 7.8 μV	
into 1 MΩ load	40 μVp-p to 1 mVp-p	0.78 % of reading + $7.8 \mu V$	Comparison to
Rate: 10 Hz to 100 kHz			Fluke 9500B
into 50Ω load	1 mVp-p to 5 Vp-p	0.16 % of reading + 7.8 μV	Oscilloscope Calibrator, Fluke 9530
into 1 MΩ load	1 mVp-p to 200 Vp-p	0.78 % of reading + 7.8 μV	3.2 GHz Active Head, Fluke 9560
Time Markers	V		Active Head w/ 70 ps
100 mVp-p to 1 Vp-p			Capability
into 50 Ω load	0.0001		
Square Wave	The state of the s	0.19 μs/s	
	83 μs to 55s	2.3 μs/s	
Sine Wave	450.5 ps to 9.009 ns	0.19 μs/s	
Pulse	900.91 ns to 83 μs	0.19 μs/s	
	83 μs to 55s	2.3 μs/s	
Triangle Wave		0.19 μs/s	
	83 μs to 55s	2.3 μs/s	

ANAR

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes 1,2			
Rise Time			
into 50 Ω load		/ · · · · · · · · · · · · · · · · · · ·	
Rate: 10 Hz to 2 MHz	5 mVp-p to 3 Vp-p		
	500 ps (nominal)	290 ps	
	150 ps (nominal)	34 ps	
Rate: 10 Hz to 1 MHz	25 mVp-p to 2 Vp-p		
	70 ps (nominal)	21 ps	Comparison to
	425 mVp-p to 575 mVp-p	/ -	Fluke 9500B
	25 ps (nominal)	5.7 ps	Oscilloscope Calibrator,
	200 mVp-p		Fluke 9530
	16 ps (nominal)	2.1 ps	3.2 GHz Active Head,
	1	A A	Fluke 9550
Leveled Sine Wave			Active Head w/ 25 ps
50 kHz Reference			Capability,
into 50 Ω load	5 mVp-p to 5 Vp-p		Fluke 9560
	50 kHz to 10 MHz	1.2 % of reading	Active Head w/ 70 ps
		9	Capability,
Input Impedance Measure	$(10 \text{ to } 40) \Omega$	0.39 % of reading	Tektronix 067-1330-000
	$(40 \text{ to } 90) \Omega$	0.083 % of reading	Calibration Fixture
	$(90 \text{ to } 150) \Omega$	0.39 % of reading	
	$(50 \text{ to } 800) \text{ k}\Omega$	0.39 % of reading	
	$(0.8 \text{ to } 1.2) \text{ M}\Omega$	0.083 % of reading	
	$(1.2 \text{ to } 12) \text{ M}\Omega$	0.39 % of reading	
	· /		
Input Capacitance Measure	(1 to 35) pF	1.6 % of reading + 0.19 pF	
	(35 to 95) pF	2.3 % of reading + 0.19 pF	
	Up to 180°		
	(10 to 65) Hz	0.11°	
	(65 to 500) Hz	0.2°	Comparison to
Phase – Source ¹	500 Hz to 1 kHz	0.4°	Fluke 5520A
	(1 to 5) kHz	1.9°	Multiproduct Calibrator
	(5 to 10) kHz	3.9°	•
	(10 to 20) kHz	7.8°	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Power – Source ¹			
(0.33 to 330) mA	11 μW to 1.1 mW	0.024 % of reading	
,	1.1 mW to 0.11 W	0.027 % of reading	
	(0.11 to 110) W	0.024 % of reading	
	(110 to 330) W	0.018 % of reading	
			Comparison to
(0.33 to 3) A	11 μW to 110 mW	0.044 % of reading	Fluke 5520A
,	(0.11 to 990) W	0.053 % of reading	Multiproduct Calibrator
	(0.99 to 3) kW	0.009 6 % of reading	
	and the same of th		
(3 to 20.5) A	99 mW to 0.99 W	0.088 % of reading	
, , , ,	0.99 W to 6.8 kW	0.07 % of reading	
	(6.8 to 20.5) kW	0.04 % of reading	
AC Power – Source ^{1,3}			
PF = 1	l V		
(3.3 to 9) mA	(10 to 65) Hz		
	(0.11 mW to 3) mW	0.13 % of reading	
	3 mW to 9 W	0.077 % of reading	
(9 to 33) mA	(10 to 65) W		
	(0.3 to 10) mW	0.089 % of reading	
	10 mW to 33 W	0.077 % of reading	
(33 to 90) mA	(10 to 65) Hz		
	(1 to 30) mW	0.071 % of reading	
	30 mW to 90 W	0.057 % of reading	
(90 to 330) mA	(10 to 65) Hz		Comparison to
	(3 to 100) mW	0.089 % of reading	Fluke 5520A
	100 mW to 300 W	0.078 % of reading	Multiproduct Calibrator
(0.33 to 0.9) A			
	(11 to 300) mW	0.071 % of reading	
	(0.3 to 900) W	0.081 % of reading	
(0.9 to 2.2) A	(10 to 65) Hz		
	(30 to 720) mW	0.089 % of reading	
	0.72 W to 2 kW	0.079 % of reading	
(2.2 to 4.5) A	(10 to 65) Hz		
	80 mW to 1.4 W	0.088 % of reading	
	1.4 W to 4.5 kW	0.18 % of reading	
(4.5 to 20.5) A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	150 mW to 230 kW	0.17 % of reading	

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 19 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Measure/Source ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C Type E (-270 to -245) °C (-195 to -155) °C (-195 to -155) °C (15 to 890) °C (890 to 1 000) °C (890 to 1 000) °C (150 to -180) °C (-120 to -180) °C (-120 to -50) °C (-120 to -50) °C (-120 to -50) °C (-50 to 990) °C (-255 to -195) °C (-155 to -155) °C (-155 to -155) °C (-155 to -155) °C (-55 to 1 000) °C	1.2 °C 0.9 °C 0.71 °C 0.55 °C 0.45 °C 0.35 °C 0.24 °C 0.19 °C 0.21 °C 0.24 °C 0.33 °C 1.6 °C 0.24 °C 0.12 °C 0.095 °C 0.08 °C 0.064 °C 0.074 °C 0.12 °C 0.12 °C 0.12 °C 0.12 °C 0.093 °C 0.093 °C 0.08 °C 0.093 °C 0.094 °C 2.5 °C 0.12 °C 0.12 °C 0.094 °C 0.12 °C 0.094 °C 0.094 °C 0.12 °C 0.097 °C 0.097 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator

Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C (30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C (45 to 105) °C (45 to 105) °C (45 to 105) °C (105 to 310) °C (310 to 615) °C (615 to 1 768) °C Type T (-270 to -255) °C (-255 to -240) °C (-210 to -150) °C (-150 to -40) °C (-40 to 100) °C	5.4 °C 1.5 °C 0.29 °C 0.18 °C 0.14 °C 0.12 °C 0.11 °C 0.8 °C 0.49 °C 0.35 °C 0.36 °C 0.49 °C 0.49 °C 0.10 °C	Comparison to Ectron 1140A Thermocouple Calibrator/Simulator
(100 to 400) °C	0.08 °C	
5 mVp-p to 5 Vp-p 100 Hz to 300 MHz (300 to 550) MHz 5 mVp-p to 3 Vp-p 550 MHz to 1.1 GHz (1.1 to 2.5) GHz 5 mVp-p to 2 Vp-p	1.6 % of reading 1.9 % of reading 2.7 % of reading 3.1 % of reading	Comparison to Fluke 9500B/3200 Oscilloscope Calibrator, Fluke 9530 3.2 GHz Active Head
	Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type R (-50 to -30) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (-30 to 45) °C (45 to 105) °C (45 to 105) °C (105 to 310) °C (310 to 615) °C (615 to 1 768) °C Type T (-270 to -255) °C (-255 to -240) °C (-240 to -210) °C (-210 to -150) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C 5 mVp-p to 5 Vp-p 100 Hz to 300 MHz (300 to 550) MHz 5 mVp-p to 3 Vp-p 550 MHz to 1.1 GHz (1.1 to 2.5) GHz	Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-140 to -70) °C (-150 to -30) °C (-30 to 45) °C (-30 to 45) °C (-30 to 45) °C (-380 to 775) °C (-775 to 1768) °C (-30 to 45) °C (-250 to -30) °C (-30 to 45) °C (-255 to -240) °C (-255 to -240) °C (-240 to -210) °C (-240 to -210) °C (-150 to -40) °C (-40 to 100) °C (-100 to 400) °C (-100 to 400) °C (-100 to 400) °C (-100 to 300 MHz (300 to 550) MHz 5 mVp-p to 3 Vp-p 550 MHz to 1.1 GHz (1.1 to 2.5) GHz 5 mVp-p to 2 Vp-p

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bandwidth Flatness Measure ¹			
into VSWR (1.2:1)	5 mVp-p to 5 Vp-p		
	100 Hz to 300 MHz	1.6 % of reading	
	(300 to 550) MHz	1.9 % of reading	Comparison to
	5 mVp-p to 3 Vp-p		Fluke 9500B/1100
	550 MHz to 1.1 GHz	2.3 % of reading	Oscilloscope Calibrator,
	(1.1 to 2.5) GHz	2.3 % of reading	Fluke 9560
	5 mVp-p to 2 Vp-p		6 GHz Active Head
	(2.5 to 3) GHz	2.3 % of reading	
	25 mVp-p to 2 Vp-p		
	(3 to 6) GHz	3.1 % of reading	
	30 Hz to 500 kHz		
	(0.33 to 1.1) mV	0.62 % of reading + 0.78 μV	
	(1.1 to 3.3) mV	0.54% of reading + 1.2 μ V	
AC Voltage – Source ¹	(3.3 to 11) mV	0.054 % of reading + 3.1 μV	Comparison to
Wide-Band Voltage	(11 to 33) mV	0.47 % of reading + 6.2 μV	Fluke 5730A
(50 Ω)	(33 to 110) mV	0.47 % of reading + 16 μV	Multiproduct Calibrator
	(110 to 330) mV	0.39 % of reading + 39 μV	
	(0.33 to 1.1) V	0.39 % of reading + 0.16 mV	
	(1.1 to 3.5) V	0.31 % of reading + 0.19 mV	
	(0.33 to 1.1) mV		
	(10 to 30) Hz	0.23 % of reading	
	(30 to 119.99) Hz	0.078 % of reading	
AC Voltage – Source ¹ Wide-Band Voltage (50 Ω) 1 kHz Reference	120 Hz to 1.199 9 kHz	0.078 % of reading	
	(1.2 to 11.999) kHz	0.078 % of reading	Comparison to
	(12 to 119.99) kHz	0.078 % of reading	Fluke 5730A
	120 Hz to 1.199 9 MHz	0.16 % of reading + 1.2 μV	Multiproduct Calibrator
	(1.2 to 2) MHz	0.16 % of reading + 1.2 μV	
	(2 to 11.9) MHz	0.16 % of reading + 1.2 μV	
	(12 to 20) MHz	0.16 % of reading + 1.2 μV	
	(20 to 30) MHz	2.1 % of reading + 5.8 μV	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ Wide-Band Voltage (50 Ω) 1 kHz Reference	(1.1 to 3.3) mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (1.2 to 119.99) kHz (12 to 119.99) kHz 120 Hz to 1.199 9 MHz (12 to 20) MHz (20 to 30) MHz (3.3 to 11) mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (1.2 to 11.999) kHz (12 to 119.99) kHz 120 Hz to 1.199 9 MHz (12 to 119) MHz (2 to 119) MHz (2 to 119) MHz (2 to 119) MHz (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 20) MHz (20 to 30) MHz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (10 to 30) Hz (30 to 119.99) kHz (12 to 11.999) kHz (12 to 20) MHz (20 to 30) MHz	0.23 % of reading 0.078 % of reading + 1.2 μV 0.078 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 1.2 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV	Comparison to Fluke 5730A Multiproduct Calibrator
	(20 to 30) MHz	0.78 % of reading $+ 1.2 \mu V$	

ANAB

(33 to 110) mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.1999 kHz (1.2 to 11.999) kHz (12 to 11.999) kHz (12 to 11.999) kHz (12 to 12) MHz (2 to 11.9) MHz (12 to 20) MHz (2 to 11.9) MHz (12 to 11.999) kHz (12 to 12) MHz (2 to 11.9) MHz (12 to 20) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (30 to 119.99) Hz (10 to 30) Hz (30 to 119.99) Hz (3	Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
120 Hz to 1.199 9 kHz (1.2 to 11.999) kHz (12 to 119.99) kHz 120 Hz to 1.199 9 MHz 0.078 % of reading 0.078 % of reading 0.078 % of reading 0.078 % of reading	Wide-Band Voltage (50 Ω)	(10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (1.2 to 11.999) kHz (12 to 119.99) kHz (12 to 119.99) kHz (20 Hz to 1.199 9 MHz (33 to 55) mV (1.2 to 2) MHz (2 to 11.9) MHz (20 to 30) MHz (20 to 30) MHz (20 to 30) MHz (20 to 30) MHz (12 to 20) MHz (20 to 30) MHz (10 to 30) W (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 11.999) kHz (12 to 11.999) kHz (12 to 11.999) kHz (12 to 11.999) kHz (10 to 165) mV (1.2 to 2) MHz (20 to 30) MHz (10 to 165) mV (1.2 to 2) MHz (20 to 30) MHz (10 to 165) mV (1.2 to 2) MHz (20 to 30) MHz (10 to 30) Hz (30 to 119.99) Hz (10 to 30) Hz (30 to 119.99) Hz (10 to 30) Hz (110 to 30) Hz (110 to 30) Hz (110 to 30) Hz (110 to 30) Hz (111 to 20) MHz (111 to 30) Hz (30 to 119.99) Hz (30 to 119.99) Hz (30 to 119.99) Hz	0.078 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.33 % of reading + 1.2 μV 0.34 % of reading + 1.2 μV 0.35 % of reading + 1.2 μV 0.378 % of reading + 1.2 μV 0.38 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV	Comparison to Fluke 5730A

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹ Wide-Band Voltage (50 Ω) 1 kHz Reference	(0.33 to 0.55) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (0.55 to 1.1) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (20 to 30) MHz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 119.99) MHz (12 to 119.99) MHz (11 to 1.75) V (1.2 to 2) MHz (2 to 11.9) MHz (20 to 30) MHz (1.75 to 3.5) V (1.2 to 2) MHz (2 to 11.9) MHz (1.75 to 3.5) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (2 to 11.9) MHz (12 to 20) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz	0.16 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 0.078 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading 1.2 μV 0.23 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.25 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 0.85 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV	Comparison to Fluke 5730A Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Amplitude Modulation – AM Depth Measure ¹			
Rate: 50 Hz to 10 kHz	(5 to 99) % Depth	/m/	
	150 kHz to 10 MHz	2.4 % Depth	Comparison to
Rate: 20 Hz to 10 kHz			HP 8902A
	150 kHz to 10 MHz	3.5 % Depth	Measuring Receiver
Rate: 50 Hz to 50 kHz			
	10 MHz to 1.3 GHz	1.4 % Depth	
11. 1.26.11.1	(1.3 to 26.5) GHz	1.9 % Depth	
Amplitude Modulation – AM			Common to
Depth Measure ¹	(> 0 to 00) 0/ Douth		Comparison to HP 8902A
Rate: 20 Hz to 100 kHz	10 MHz to 1.3 GHz	2.5.9/ Douth	
		3.5 % Depth 3.5 % Depth	Measuring Receiver
Fraguency Madulation	(1.3 to 26.5) GHz	3.5 % Depth	
Frequency Modulation – Measure ¹	\ \		
Rate: 50 Hz to 10 kHz	< 40 kHz peak	A A A A /	
Rate. 30 112 to 10 KHZ	250 kHz to 10 MHz	2.4 % Deviation	Comparison to
Rate: 50 Hz to 100 kHz		2.1 70 Beviation	HP 8902A
	10 MHz to 26.5 GHz	1.4 % Deviation	Measuring Receiver
Rate: 20 Hz to 200 kHz			
	10 MHz to 26.5 GHz	5.8 % Deviation	
Phase Modulation –		a.e.e.e	
Measure ¹			Campanian
Rate: 200 Hz to 10 kHz	< 40 rad Deviation		Comparison to HP 8902A
	150 kHz to 10 MHz	4.9 % Deviation	Measuring Receiver
Rate: 200 Hz to 20 kHz	The state of the s		Wieasuring Receiver
	10 MHz to 26.5 GHz	3.8 % Deviation	
	(-80 to 0) dBc		Comparison to
Harmonic Distortion ¹	30 Hz to 6.5 GHz	1.7 dB	Agilent 8563E
Trainionic Bistortion	(6.5 to 22) GHz	2.6 dB	Spectrum Analyzer
	(22 to 26.5) GHz	3.4 dB	
Total Harmonic Distortion –	(-80 to 0) dB	1.2 ID	Comparison to
Measure ¹	20 Hz to 20 kHz	1.2 dB	Agilent 8903B
	(20 to 100) kHz	2.3 dB	Audio Analyzer
AM Total Harmonic	(-80 to 0) dB		Comparison to Agilent 8903B
Distortion – Measure ¹	20 Hz to 100 kHz	2.7 dB	Audio Analyzer
			Audio Allalyzei

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 26 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Total Harmonic Distortion – Measure ¹ Input Voltage Range 5 Hz to 1.2 MHz < 30 V	(0.3 to 100) % THD 10 Hz to 1 MHz (1 to 3) MHz 0.1 % THD (10 to 20) Hz (20 to 30) Hz 30 Hz to 300 kHz (300 to 500) kHz 500 kHz to 1.2 MHz	3 % of reading 6 % of reading 12 % of reading 6 % of reading 3 % of reading 6 % of reading 12 % of reading	Comparison to Agilent 334A Distortion Analyzer
Total Harmonic Distortion – Measure ¹ Input Voltage Range 5 Hz to 1.2 MHz > 30 V	(0.3 to 100) % THD 10 Hz to 300 kHz (300 to 500) kHz 500 kHz to 3 MHz 0.1 % THD (20 Hz to 30) Hz 30 Hz to 300 kHz (300 to 500) kHz 500 kHz to 1.2 MHz	3 % of reading 6 % of reading 12 % of reading 12 % of reading 3 % of reading 6 % of reading 12 % of reading	Comparison to Agilent 334A Distortion Analyzer
Absolute RF Power – Measure ¹	100 kHz to 2.6 GHz (-20 to -10) dBm (-10 to 0) dBm (0 to 10) dBm (10 to 20) dBm (20 to 30) dBm (2.6 to 12.2) GHz (-20 to -10) dBm (-10 to 0) dBm (0 to 10) dBm (10 to 20) dBm (20 to 30) dBm	0.11 dB 0.1 dB 0.11 dB 0.11 dB 0.23 dB 0.14 dB 0.13 dB 0.13 dB 0.14 dB 0.25 dB	Comparison to Agilent 8902A Measuring Receiver, Agilent 11722A Power Sensor, Agilent 11792A Microwave Converter, Agilent 11793A Microwave Converter

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 27 of 42

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Absolute RF Power – Measure ¹	(12.2 to 17.75) GHz (-20 to -10) dBm (-10 to 0) dBm (0 to 10) dBm (10 to 20) dBm (20 to 30) dBm (17.75 to 26.5) GHz (-20 to -10) dBm (-10 to 0) dBm (0 to 5) dBm	0.15 dB 0.14 dB 0.14 dB 0.15 dB 0.25 dB 0.18 dB 0.18 dB 0.18 dB	Comparison to Agilent 8902A Measuring Receiver, Agilent 11722A Power Sensor, Agilent 11792A Microwave Converter, Agilent 11793A Microwave Converter
Tuned RF Absolute Power – Measure ¹	2.5 MHz to 26.5 GHz (-127 to -120) dB (-120 to -110) dB (-110 to -100) dB (-100 to -90) dB (-90 to -80) dB (-80 to -70) dB (-70 to -60) dB (-60 to -50) dB (-50 to -40) dB (-40 to -30) dB (-30 to -20) dB (-20 to -10) dB (-10 to 0) dB	0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.25 dB 0.25 dB 0.25 dB 0.25 dB 0.14 dB 0.14 dB 0.14 dB 0.14 dB	Comparison to Agilent 8902A Opt 50 Measuring Receiver, Agilent 11722A Power Sensor, Agilent 11792A Microwave Converter, Agilent 11793A Microwave Converter
Tuned RF Relative Power – Measure ¹	2.5 MHz to 26 GHz (-127 to -120) dB (-120 to -110) dB (-110 to -100) dB (-100 to -90) dB (-90 to -80) dB (-90 to -80) dB (-80 to -70) dB (-70 to -60) dB (-60 to -50) dB (-50 to -40) dB (-40 to -30) dB (-30 to -20) dB (-20 to -10) dB (-10 to 0) dB	0.23 dB 0.23 dB 0.23 dB 0.23 dB 0.22 dB 0.084 dB 0.081 dB 0.074 dB 0.071 dB 0.068 dB 0.064 dB 0.064 dB	Comparison to Agilent 8902A Opt 50 Measuring Receiver, Agilent 11722A Power Sensor, Agilent 11792A Microwave Converter, Agilent 11793A Microwave Converter

Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
(Rho) 0.022 to 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4	0.022 0.027 0.033 0.042	Comparison to VSWR Bridge
10 MHz to 18 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm	0.26 dB 0.1 dB 0.17 dB	Comparison to EPM Power Meter, HP 8481A Power Sensor
100 kHz to 4.2 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm	0.26 dB 0.1 dB 0.17 dB	Comparison to EPM Power Meter, HP 8482A Power Sensor
50 MHz to 18 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm (18 to 26.5) GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm	0.26 dB 0.1 dB 0.17 dB 0.3 dB 0.18 dB 0.22 dB	Comparison to EPM Power Meter, HP 8485A Power Sensor
9 kHz to 6 GHz (-60 to -50) dBm (-50 to -40) dBm (-40 to -10) dBm (-10 to 0) dBm (0 to 20) dBm	3.3 dB 0.29 dB 0.17 dB 0.15 dB 0.13 dB	Comparison to EPM Power Meter, HP E9304A Power Sensor
(5 to 99) % Depth	1 % Denth	
(20 to 99) % Depth 10 MHz to 3 GHz (5 to 20) % Depth 10 MHz to 3 GHz (3 to 26.5) GHz (20 to 99) % Depth	0.9 % Depth 3 % Depth 5.2 % Depth	Comparison to Agilent E4440A PSA Spectrum Analyzer
	0.022 to 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4 10 MHz to 18 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm 100 kHz to 4.2 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm 50 MHz to 18 GHz (-30 to -20) dBm (-20 to 10) dBm (10 to 20) dBm (-20 to 10) dBm (10 to 20) dBm (-20 to 10) dBm (-10 to 20) dBm (-50 to -40) dBm (-40 to -10) dBm (-40 to -10) dBm (-10 to 0) dBm (0 to 20) dBm (5 to 99) % Depth 100 kHz to 10 MHz (20 to 99) % Depth 10 MHz to 3 GHz (5 to 20) % Depth 10 MHz to 3 GHz (5 to 20) % Depth	0.022 to 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4 10 MHz to 18 GHz (-30 to -20) dBm (-20 to 10) dBm (-10 to 20) dBm (-20 to 10) dBm (-20 to 10) dBm (-20 to 10) dBm (-20 to 10) dBm (-10 to 20) dBm (-20 to 10) dBm (-10 to 20) dBm (-50 to -40) dBm (-10 to 0) dBm (-10 to 20) dBm (-10 to 0) dBm (-

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Amplitude Modulation			
Distortion – Measure ¹			Comparison to
Rate: 20 Hz to 1 kHz	<u> </u>	A-0	Agilent E4440A
	10 kHz to 10 MHz	15 % of reading	PSA Spectrum Analyzer
	10 MHz to 26.5 GHz	16 % of reading	
Frequency Modulation –			
Measure ¹			Comparison to
Rate: 20 Hz to 10 kHz		7 / /	Agilent E4440A
	250 kHz to 10 MHz	1.8 % Deviation	PSA Spectrum Analyzer
	Deviation Rate > 1.2		1 S71 Speed and 7 Mary 261
	250 kHz to 10 MHz	1.3 % Deviation	
Frequency Modulation –		A A	
Measure ¹			
Rate: 50 Hz to 200 kHz			
	10 MHz to 6.6 GHz	1.8 % Deviation	
	Deviation Rate > 0.45		
	10 MHz to 6.6 GHz	1.3 % Deviation	Comparison to
	Deviation Rate > 0.2	2.0/ D	Agilent E4440A
	(6.6 to 13.2) GHz	3 % Deviation	PSA Spectrum Analyzer
	Deviation Rate > 0.8	1.2.0/ T	1
	(6.6 to 13.2) GHz	1.3 % Deviation	
	Deviation Rate > 0.2	4.9.0/ Designation	
	(13.2 to 26.5) GHz	4.8 % Deviation	
	Deviation Rate > 16	1.20/ Daviation	
Engagement Madulation	(13.2 to 26.5) GHz	1.3 % Deviation	
Frequency Modulation Distortion – Measure ¹			
Rate: 20 Hz to 1 kHz	Deviation > 500 Hz		
Kaic. 20 HZ to 1 KHZ	1 MHz to 6.6 GHz	14 % of reading	Comparison to
	Deviation > 2.3 kHz	14 /0 of reading	Agilent E4440A
	(6.6 to 13.2) GHz	14 % of reading	PSA Spectrum Analyzer
	Deviation > 2.7 kHz	14 /0 of reading	
	(13.2 to 26.5) GHz	14 % of reading	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase Modulation – Measure ¹	> 0.7 rad 100 kHz to 6.6 GHz > 0.3 rad 100 kHz to 6.6 GHz > 2 rad (6.6 to 13.2) GHz > 0.6 rad (6.6 to 13.2) GHz > 4 rad (13.2 to 26.5) GHz > 1.2 rad	1.3 % of reading 3.5 % of reading 1.3 % of reading 3.5 % of reading 1.3 % of reading	Comparison to Agilent E4440A PSA Spectrum Analyzer
Phase Modulation Distortion – Measure ¹ Rate: (20 to 500) Hz	> 0.8 rad 1 MHz to 6.6 GHz > 1.8 rad (6.6 to 13.2) GHz > 3.5 rad (13.2 to 26.5) GHz	3.5 % of reading 16 % of reading 17 % of reading 15 % of reading	Comparison to Agilent E4440A PSA Spectrum Analyzer
Phase Modulation Distortion — Measure ¹ Rate: 500 Hz to 1 kHz	> 0.4 rad 1 MHz to 6.6 GHz > 0.8 rad (6.6 to 13.2) GHz > 1.2 rad (13.2 to 26.5) GHz	15 % of reading 14 % of reading 14 % of reading	Comparison to Agilent E4440A PSA Spectrum Analyzer
Tuned Relative RF Power – Measure ¹	100 kHz to 3.05 GHz (-120 to -110) dBm (-110 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-80 to -70) dBm (-70 to -60) dBm (-60 to -50) dBm (-50 to -40) dBm (-40 to -30) dBm (-30 to -20) dBm (-20 to -10) dBm (-10 to 0) dBm	0.17 dB 0.1 dB 0.09 dB 0.086 dB 0.081 dB 0.068 dB 0.063 dB 0.046 dB 0.041 dB 0.035 dB 0.03 dB 0.03 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Tuned Relative RF Power – Measure ¹	(3.05 to 6.6) GHz (-120 to -110) dBm (-110 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-80 to -70) dBm (-70 to -60) dBm (-60 to -50) dBm (-50 to -40) dBm (-40 to -30) dBm (-30 to -20) dBm (-20 to -10) dBm (-10 to 0) dBm	0.29 dB 0.1 dB 0.09 dB 0.086 dB 0.081 dB 0.068 dB 0.063 dB 0.046 dB 0.041 dB 0.035 dB 0.03 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer
RF Power – Power Meter Reference	50 MHz 1 mW Reference	0.43 % of reading	Comparison to HP 478A Thermistor, Agilent 3458A 8.5 Digit Multimeter, HP 432A Analog Power Meter
Tuned Relative RF Power – Measure 1	(6.6 to 13.2) GHz (-110 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-80 to -70) dBm (-70 to -60) dBm (-60 to -50) dBm (-50 to -40) dBm (-40 to -30) dBm (-30 to -20) dBm (-20 to -10) dBm (-10 to 0) dBm	0.25 dB 0.091 dB 0.086 dB 0.082 dB 0.077 dB 0.063 dB 0.058 dB 0.041 dB 0.035 dB 0.029 dB 0.023 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Tuned Relative RF Power – Measure ¹	(13.2 to 18) GHz (-110 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-80 to -70) dBm (-60 to -50) dBm (-60 to -50) dBm (-50 to -40) dBm (-40 to -30) dBm (-30 to -20) dBm (-10 to 0) dBm (-10 to 0) dBm (-10 to -90) dBm (-90 to -80) dBm (-90 to -80) dBm (-70 to -60) dBm (-60 to -50) dBm (-60 to -50) dBm (-50 to -40) dBm (-10 to 0) dBm (-10 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-90 to -90) dBm (-90 to -90) dBm (-100 to -90) dBm	0.61 dB 0.19 dB 0.086 dB 0.083 dB 0.077 dB 0.073 dB 0.062 dB 0.055 dB 0.036 dB 0.029 dB 0.024 dB 0.024 dB 0.072 dB 0.082 dB 0.077 dB 0.069 dB 0.054 dB 0.054 dB 0.05 dB 0.023 dB 0.15 dB 0.15 dB 0.15 dB 0.14 dB 0.14 dB 0.14 dB 0.14 dB 0.13 dB 0.13 dB 0.13 dB 0.12 dB 0.12 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Tuned Absolute RF Power – Measure 1	(3.05 to 6.6) GHz (-120 to -110) dBm (-110 to -100) dBm (-100 to -90) dBm (-90 to -80) dBm (-90 to -80) dBm (-80 to -70) dBm (-70 to -60) dBm (-60 to -50) dBm (-50 to -40) dBm (-30 to -20) dBm (-10 to 0) dBm (-10 to 0) dBm (-10 to -90) dBm (-90 to -80) dBm (-90 to -80) dBm (-50 to -40) dBm (-10 to -50) dBm (-10 to -50) dBm (-10 to -90) dBm (-90 to -80) dBm (-90 to -80) dBm (-90 to -80) dBm (-90 to -80) dBm (-90 to -90) dBm (-90 to -80) dBm (-90 to -90) dBm (-90 to -90) dBm (-10 to -90) dBm	0.32 dB 0.18 dB 0.18 dB 0.18 dB 0.17 dB 0.17 dB 0.17 dB 0.16 dB 0.16 dB 0.16 dB 0.16 dB 0.16 dB 0.17 dB 0.16 dB 0.17 dB 0.17 dB 0.17 dB 0.18 dB 0.19 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Tuned Absolute RF Power – Measure ¹	(18 to 26.5) GHz (-100 to -90) dBm (-90 to -80) dBm (-80 to -70) dBm (-70 to -60) dBm (-60 to -50) dBm (-50 to -40) dBm (-40 to -30) dBm (-30 to -20) dBm (-20 to -10) dBm (-10 to 0) dBm	0.51 dB 0.28 dB 0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.26 dB 0.25 dB	Comparison to Agilent E4440A PSA Spectrum Analyzer

Length – Dimensional Metrology

	- 87		
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle Measuring Devices ⁵	Up to 85°	1.5"	Comparison to Master Angle Blocks
Angle Measuring Devices ⁵	90°	1.9"	Comparison to Master Square
Micrometers, Calipers ^{1,5} (Outside, Inside, and Depth)	(0.05 to 48) in	(8+ 8 <i>L</i>) μin	Comparison to Gage Blocks
Anvil Flatness ¹	Up to 1 in	4.5 μin	Comparison to Optical Flats
Indicators ^{1,5} (Dial and Digital)	Up to 0.05 in	28 μin	Comparison to Dial Indicator Calibrator
Indicators ^{1,5} (Dial and Digital)	(0.05 to 5) in	(44 + 4 <i>L</i>) μin	Comparison to Horizontal Comparator
Length – Single Axis ⁵ Outside Measurement	Up to 5 in	(6 + 8 <i>L</i>) μin	Comparison to Horizontal Comparator
Inside Dimension	Up to 5 in	$(22 + 3L) \mu in$	
Height Measuring Equipment ^{1,5}	(0.4 to 8) in (8 to 48) in	(29 + 6L) µin $(12 + 8L)$ µin	Comparison to Gage Blocks
Cylindrical Plug Gages ⁵			Comparison to
Outside Diameter	Up to 5 in	(6 + 8L) µin	Horizontal Comparator
Cylindrical Pin Gages			Direct measure using
Outside Diameter	(0.004 to 1) in	36 μin	Laser Micrometer

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Cylindrical Ring Gages ⁵			Comparison to
Inside Diameter	Up to 5 in	$(22 + 3L) \mu in$	Horizontal Comparator
Rulers, Tape Measures ⁵	Up to 16 in	(1 <mark>20 +1</mark> 0 <i>L</i>) μin	Comparison to Vision System
Thread Plug Gages ⁵			Comparison to
Pitch Diameter, 60°	Up to 1 in	79 μin	Universal Length
	(1 to 3) in	84 μin	Measuring System,
	(3 to 5) in	94 μin	Master Thread Wires
Major Diameter	Up to 5 in	(6 + 8 <i>L</i>) μin	Horizontal Comparator
Thread Ring Gages			
Pitch Diameter	Up to 1 in	79 µin	Tactile Fit using
	(1 to 3) in	84 μin	Master Thread Plug
	(3 to 5) in	94 μin	
Wire Crimpers/Dies	N N		Comparison to
Crimp Height	Up to 0.8 in	180 μin	Height Micrometer
Die Diameter	(0.011 to 0.5) in	0.001 2 in	Class Z Pin Gage Set

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Measuring Equipment	(1 to 200) lbf	0.06 % of reading	Comparison to Deadweights
	(0.5 to 15) ozf·in	0.83 % of reading	
	(15 to 200) ozf·in	0.4 % of reading	
Torque Measuring Devices ¹	(4 to 80) lbf·in	0.43 % of reading	Comparison to
(Wrenches, Electronic, etc.)	(80 to 1 000) lbf·in	0.4 % of reading	Torque Calibration System
	(20 to 2 000) lbf·ft	0.4 % of reading	
	(1 000 to 5 000) lbf·ft	1 % of reading	
	(0.5 to 16) ozf·in	0.83 % of reading	Comparison to
Torque Calibration System	(1 to 40) lbf·in	0.08 % of reading	Torque Wheels,
(Analyzers, Transducers, etc.)	(40 to 260) lbf·in	0.07 % of reading	Torque Arms,
	(260 to 3 000) lbf·in	0.07 % of reading	NIST Class F Weights

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Torque Multipliers	(150 to 2 700) N·m (110 to 2 000) lbf·ft (2 700 to 4 000) N·m (2 000 to 3 000) lbf·ft (4 000 to 27 000) N·m (3 000 to 20 000) lbf·ft	1.1 % of reading 1.1 % of reading 1.3 % of reading 1.3 % of reading 1.4 % of reading 1.4 % of reading	Comparison to Torque Calibration System
Torque Angle	45° 90° 135° 180° 360°	0.49° 0.49° 0.49° 0.49° 0.49°	Comparison to Torque Angle Fixture
Hydraulic Torque Devices	(150 to 2 700) N·m (110 to 2 000) lbf·ft (2 700 to 4 000) N·m (2 000 to 3 000) lbf·ft (4 000 to 27 000) N·m (3 000 to 20 000) lbf·ft	1.1 % of reading 1.1 % of reading 1.3 % of reading	Comparison to Torque Calibration System
Scales & Balances ^{1,6} (SI)	(5 to 500) mg (0.5 to 5) g (5 to 10) g (10 to 30) g 30 g to 9 kg (9 to 15) kg	12 μg 40 μg 58 μg 89 μg 0.000 32 % of reading 0.000 34 % of reading	ASTM E617 Class 1 weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales & Balances 1,6 (SI)	Up to 100 mg (100 to 500) mg (0.5 to 5) g (5 to 10) g (10 to 20) g (20 to 30) g (30 to 100) g 100 g to 20 kg	16 μg 29 μg 58 μg 82 μg 0.12 mg 0.18 mg 0.35 mg 0.005 9 % of reading	ASTM E617 Class 2 weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales & Balances 1,6 (Avoirdupois)	Up to 0.02 lb (0.02 to 1) lb (1 to 5) lb (5 to 977) lb	2.3 mg 0.041 % of reading 0.038 % of reading 0.036 % of reading	NIST Class F weights and internal calibration procedure utilized for the calibration of the weighing system.
Pressure Devices (Absolute Pressure)	Up to 25 psia (25 to 500) psia	0.001 9 psi 0.006 8 % of reading	Ruska 7250xi Pressure Controller/Calibrator

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Pneumatic Pressure Devices (Gauge Pressure)	(-60 to -22) inH ₂ O (-22 to 22) inH ₂ O (22 to 60) inH ₂ O (60 to 72) inH ₂ O (72 to 804) inH ₂ O	0.009 % of reading + 0.000 15 inH ₂ O 0.002 2 inH ₂ O 0.009 % of reading + 0.000 15 inH ₂ O 0.006 7 inH ₂ O 0.009 % of reading + 0.000 15 inH ₂ O	Comparison to DHI PPC4 Pressure Controller
Pneumatic Pressure Devices (Gauge Pressure)	(-14.7 to 25) psi (25 to 500) psig	0.001 6 psi 0.007 6 % of reading	Comparison to Ruska 7250xi Pressure Controller/Calibrator
Pneumatic Pressure Devices (Gauge Pressure)	(10 to 3 000) psig (3 000 to 30 000) psig	0.38 psi 0.01 % of reading	Comparison to Fluke RPM 4 Reference Pressure Monitor
Hydraulic Pressure Devices (Gauge Pressure)	(5 to 15 000) psig	0.02 % of reading	Comparison to Fluke P3125-PSI Oil Deadweight Tester

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Relative Humidity – Measure ¹	(10 to 30) °C (10 to 90) %RH	1.3 %RH	Comparison to Temperature/Humidity Indicator/Probe
Relative Humidity – Source	(-10 to 15) °C (10 to 75) %RH (75 to 95) %RH (15 to 35) °C (10 to 95) %RH (35 to 70) °C (10 to 50) %RH (50 to 75) %RH (75 to 95) %RH	0.5 %RH 0.65 %RH 0.5 %RH 0.5 %RH 0.7 %RH 0.85 %RH	Comparison to Two-pressure Humidity Generator

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Source ¹ (Thermocouple Probes, RTD's, Thermistors)	(-25 to 140) °C (140 to 660) °C	0.06 °C 0.03 °C	Comparison to AccuMac AM1760 Secondary SPRT, Hart 1575 Super Thermometer, Hart Drywell
Temperature – Measure ¹	(-195 to 0) °C (0 to 420) °C (420 to 660) °C	0.001 % of reading + 0.011 °C 0.001 % of reading + 0.025 °C 0.001 % of reading + 0.037 °C	Direct measure using AccuMac AM1760 Secondary SPRT, Hart Black Stack
Temperature – Measure ¹	(-195 to 0) °C (0 to 420) °C (420 to 660) °C	0.001 % of reading + 0.01 °C 0.001 % of reading + 0.02 °C 0.001 % of reading + 0.031 °C	Direct measure using AccuMac AM1760 Secondary SPRT, Hart 1575 Super Thermometer
Infrared Temperature – Measuring Equipment ¹	(-15 to 0) °C (0 °C to 50) °C (50 °C to 100) °C (100 °C to 120) °C (120 °C to 200) °C (200 °C to 350) °C (350 °C to 500) °C	0.8 °C 0.65 °C 0.7 °C 0.76 °C 0.95 °C 1.6 °C 2.1 °C	Comparison to Blackbody Source (flat plate) $\mathcal{E} = (0.9 \text{ to } 1),$ $\lambda = (8 \text{ to } 14) \mu\text{m}$

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-) Reference Standar Method, and/or Equipment
Frequency – Reference ¹	10 MHz	3.8 pHz/Hz Comparison to Fluke 910R GPS Frequency Standa
Stopwatches, Timers ¹	Up to 599 s/mon	Comparison to Vibrograf TM-4500 Timometer

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Duty Cycle – Source ¹ Square Wave: < 3.3 Vp-p Freq: 0.1 Hz to 100 kHz	(1 to 10) % Duty Cycle 10 μs to 100 s (10 to 49) % Duty Cycle 10 μs to 100 s 50 % Duty Cycle 10 μs to 100 s (51 to 90) % Duty Cycle 10 μs to 100 s (90 to 99) % Duty Cycle 10 μs to 100 s	0.62 % of reading + 78 ns 0.039 % of reading + 78 ns 0.001 6 % of reading + 78 ns 0.039 % of reading + 78 ns 0.62 % of reading + 78 ns	Comparison to Fluke 5522A Multiproduct Calibrator
Rotational Speed – Measure ^{1,5}	(10 to 999.9) rpm (1 000 to 99 999) rpm	0.058 % of reading + 0.12 rpm 0.082 % of reading + 1.2 rpm	Reflective Measure utilizing the Extech 461995 Photo Tachometer.
Rise Time – Source ^{1,2}	≥ 14 ps	2.4 ps	Comparison to Pulser
Rise Time – Source ^{1,2}	25 Vp-p 350 ps	64 ps	Comparison to Rise Time Pulse Generator
Rise Time – Measure	≥ 17 ps	3.9 ps	Comparison to Sampling System

DIMENSIONAL MEASUREMENT

2 Dimensional

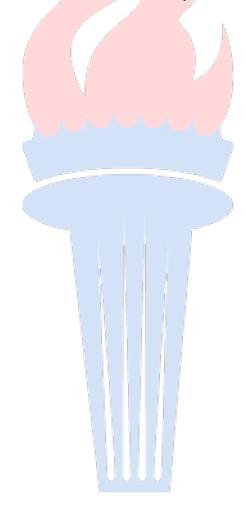
Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement – 2D ⁵	X-Y Axis: Up to 16 in	(120 + 10 <i>L</i>) μin	Vision System utilized as the Reference Standard for Dimensional Measurement.
Angles 5	Up to 2 in Up to 360° (2 to 16) in Up to 360°	0.072° $(0.062 + 0.000 5L)^{\circ}$	Vision System utilized as the Reference Standard for Dimensional Measurement.

3 Dimensional

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement – 3D ⁵	X: Up to 24 in Y: Up to 24 in Z: Up to 24 in	(90 + 8.8 <i>L</i>) μin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Dimensional Measurement – 3D	X: Up to 30 in Y: Up to 30 in Z: Up to 24 in	300 µin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Dimensional Measurement – 3D	X: Up to 39 in Y: Up to 36 in Z: Up to 24 in	390 μin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Dimensional Measurement – 3D	X: Up to 39 in Y: Up to 48 in Z: Up to 24 in	430 μin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Dimensional Measurement – 3D	X: Up to 39 in Y: Up to 54 in Z: Up to 24 in	450 μin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Dimensional Measurement – 3D	X: Up to 39 in Y: Up to 62 in Z: Up to 24 in	490 μin	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Angle Measurements – 3D ⁵	X: Up to 1 in Y: Up to 1 in Z: Up to 1 in Up to 360°	12"	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Angle Measurements – 3D ⁵	X: Up to 3 in Y: Up to 3 in Z: Up to 3 in Up to 360°	4.5"	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Angle Measurements – 3D ⁵	X: Up to 12 in Y: Up to 12 in Z: Up to 12 in Up to 360°	1.9"	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.
Angle Measurements – 3D ⁵	X: Up to 39 in Y: Up to 62 in Z: Up to 24 in Up to 360°	1.6"	Zeiss CONTURA G2 Coordinate Measuring Machine utilized for Dimensional Measurement.

This Scope of Accreditation, version 014, was last updated on: 29 August 2025 and is valid only when accompanied by the Certificate.

Page 41 of 42


Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. The stated uncertainty is the laboratory's ability to source a fast rise pulse that is approximately 500 ps, 150 ps, 70 ps, and 25 ps. In the typical application of measuring rise time of an oscilloscope, this value is one of the contributing factors, but other factors are derived from the DUT. The known source rise time is mathematically removed from the total measured rise time measured on the DUT.
- 3. The uncertainties shown are for the most favorable conditions. There is an increase in uncertainty that corresponds to the laboratory's AC voltage and current uncertainties at different frequencies other than the ones shown. Power factors (PF) other than the one shown contribute to the power uncertainty. PF is related to the cosine of phase. Therefore, uncertainties track the laboratory's phase uncertainty closely at PF near one but are magnified heavily as PF approaches zero. The lab may also report reactive power, apparent power, and power factor under this accreditation. If needed, contact the laboratory for more information regarding uncertainties at frequency and power factor combinations other than the ones shown.
- 4. This parameter is a unitless measurement.
- 5. " = arc-minute; L = length in inches; rpm = revolutions per minute.
- 6. The CMC for scales and balances is highly dependent upon the resolution of the unit under test. The CMC presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
- 7. Unless otherwise specified in the far-right column under the field of Calibration, the calibration procedure utilized by the laboratory was developed internally.
- 8. The legal entity for this site is Transcat, Inc.

Jason Stine, Vice President

