

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Transcat - Chesapeake 928 Canal Drive Chesapeake, VA 23323

Fulfills the requirements of

ISO/IEC 17025:2017

and national standards

ANSI/NCSL Z540-1-1994 (R2002) AND ANSI/NCSL Z540.3-2006 (R2013)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 07 September 2027 Certificate Number: AC-2489.21

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND

ANSI/NCSL Z540-1-1994 (R2002) ANSI/NCSL Z540.3-2006 (R2013)

Transcat - Chesapeake

928 Canal Drive Chesapeake, VA 23323 Dante Daneri 757-558-2550

CALIBRATION

ISO/IEC 17025 Accreditation Granted: 07 September 2025

Certificate Number: AC-2489.21 Certificate Expiry Date: 07 September 2027

Acoustics and Vibration

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Vibration – Measure			
(any single axis)	1		
Voltage Sensitivity	100 Hz		
	10 mV/g	1.5 % of reading	Comparison to
Frequency Response	(0.8 to 20) g RMS		Reference Accelerometer
Trequency response	(5 to 20) Hz	2.1 % of reading	w/ Calibrator
	(20 to 100) Hz	1.9 % of reading	
	(100 to 2 500) Hz	1.5 % of reading	
	(2 500 to 10 000) Hz	2.8 % of reading	
Sound – Generate	1 kHz		Comparisons to
Sound – Generate	110 dB	0.42 dB	SPL Calibrator
Sound – Measure	20 Hz to 10 kHz		Comparisons to
Sound – Weasure	(50 to 120) dB	0.5 dB	Sound Level Meter

Chemical Quantities

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
nH Motors	4 pH 7 pH	<mark>0.0</mark> 14 рН <mark>0.0</mark> 11 рН	Comparisons to
pH Meters	10 pH	0.011 pH 0.016 pH	Accredited pH Solutions
	10 μS/cm	0.35 μS/cm	
	25 μS/cm	1.4 μS/cm	
	75 μS/cm	1.5 μS/cm	Comparisons to
Conductivity Meters	100 μS/cm	0.86 μS/cm	Accredited Conductivity
	1 015 μS/cm	6 μS/cm	Solutions
	1 408 μS/cm	8 μS/cm	
	10 000 μS/cm	50 μS/cm	
Gas Detection Equipment ¹			
CO	0.002 % CO Concentration	0.000 096 % CO Concentration	
(Carbon Monoxide)	0.006 % CO Concentration	0.000 15 % CO Concentration	
	0.01 % CO Concentration	0.000 22 % CO Concentration	
	0.1 % CO Concentration	0.000 83 % CO Concentration	
	0.5 % CO Concentration	0.01 % CO Concentration	
CH ₄ (Methane LEL)	50 % LEL Concentration	1 % LEL Concentration	
C ₅ H ₁₂ (Pentane LEL)	58 % LEL Concentration	1.5 % LEL Concentration	Comparisons to
H_2S	0.002 % H ₂ S Concentration	0.000 1 % H ₂ S Concentration	Certified Gas Mixtures
(Hydrogen Sulfide)	0.002 5 % H ₂ S Concentration	0.000 11 % H ₂ S Concentration	Certified Gus Wilktures
(Try drogen Sumae)		0.000 11 70 1125 Concentration	
O_2	0.5 % O ₂ Concentration	0.005 2 % O ₂ Concentration	
(Oxygen)	5 % O ₂ Concentration	0.038 % O ₂ Concentration	
	15 % O ₂ Concentration	0.14 % O ₂ Concentration	
	18 % O ₂ Concentration	0.16 % O ₂ Concentration	
C ₄ H ₈ (Isobutylene)	0.01 % C ₄ H ₈ Concentration	0.000 23 % C ₄ H ₈ Concentration	
CO_2	0.5 % CO ₂ Concentration	0.004 4 % CO ₂ Concentration	
(Carbon Dioxide)	5 % CO ₂ Concentration	0.081 % CO ₂ Concentration	

 $This \ Scope \ of \ Accreditation, version \ 012, was \ last \ updated \ on: \ 05 \ November \ 2025 \ and \ is \ valid \ only \ when \ accompanied \ by \ the \ Certificate.$

Page 2 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V (220 to 1 100) V	$7.5 \mu V/V + 0.4 \mu V$ $5 \mu V/V + 0.7 \mu V$ $3.5 \mu V/V + 2.5 \mu V$ $3.5 \mu V/V + 4 \mu V$ $5 \mu V/V + 40 \mu V$ $6.5 \mu V/V + 0.4 m V$	Comparison to Fluke 5730A/03 Multiproduct Calibrator
DC Voltage – Measure ¹	(0 to 200) mV (0.2 to 2) V (2 to 20) V (20 to 200) V (200 to 1 000) V	$5.2 \mu\text{V/V} + 90 \text{nV}$ $3.6 \mu\text{V/V} + 0.39 \mu\text{V}$ $3.5 \mu\text{V/V} + 3.9 \mu\text{V}$ $5.5 \mu\text{V/V} + 39 \mu\text{V}$ $5.5 \mu\text{V/V} + 0.47 \text{mV}$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter
DC High Voltage – Measure ¹	(1 to 10) kV	0.039 % of reading + 92 mV	Comparison to Vitrek 4700 High Voltage Meter
DC High Voltage – Measure ¹	Up to 40 kV	2 % of reading	Comparison to Fluke 80K40HV Probe, Fluke 8508A opt 001 8.5 Digit Multimeter
DC Current – Source ¹	(0 to 220) µA (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	$40 \mu A/A + 6 nA$ $35 \mu A/A + 7 nA$ $35 \mu A/A + 40 nA$ $45 \mu A/A + 0.7 \mu A$ $80 \mu A/A + 12 \mu A$	Comparison to Fluke 5730A/03 Multiproduct Calibrator
DC Current – Source ¹	(2.2 to 3) A (3 to 11) A (11 to 20.5) A	0.3 mA/A + 31 μA 0.51 mA/A + 0.39 mA 0.93 mA/A + 0.58 mA	Comparison to Fluke 5522A/11 Multiproduct Calibrator
DC Current – Source ¹	(20 to 100) A	0.04 % of reading	Comparison to Current Source, SR-100 Current Shunt, Fluke 8508 8.5 Digit Multimeter
DC Clamp-on Ammeter (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (150 to 1 000) A	0.51 % of reading + 0.14 A 0.52 % of reading + 0.5 A	Comparison to Fluke 5522A/11 Multiproduct Calibrator, 50-turn Coil

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Measure ¹	(0 to 200) μA (0.2 to 2) mA (2 to 20) mA (20 to 200) mA (0.2 to 2) A (2 to 20) A	$13 \mu A/A + 0.31 \text{ nA}$ $13 \mu A/A + 3.1 \text{ nA}$ $14 \mu A/A + 31 \text{ nA}$ $47 \mu A/A + 0.62 \mu A$ $0.18 \text{ mA/A} + 12 \mu A$ $0.39 \text{ mA/A} + 0.31 \text{ mA}$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter
DC Current – Measure ¹	(20 to 100) A	0.04 % of reading + 24 μA	Comparison to SR-100 Current Shunt, Fluke 8508A opt 001 8.5 Digit Multimeter
DC Resistance – Source ¹ (Simulation)	$(0 \text{ to } 11) \Omega$ $(11 \text{ to } 33) \Omega$ $(33 \text{ to } 110) \Omega$ $(110 \text{ to } 330) \Omega$ $(0.33 \text{ to } 1.1) \text{ k}\Omega$ $(1.1 \text{ to } 3.3) \text{ k}\Omega$ $(3.3 \text{ to } 11) \text{ k}\Omega$ $(11 \text{ to } 3.3) \text{ k}\Omega$ $(33 \text{ to } 110) \text{ k}\Omega$ $(110 \text{ to } 330) \text{ k}\Omega$ $(0.33 \text{ to } 1.1) \text{ M}\Omega$ $(1.1 \text{ to } 3.3) \text{ M}\Omega$ $(3.3 \text{ to } 1.1) \text{ M}\Omega$ $(1.1 \text{ to } 3.3) \text{ M}\Omega$ $(3.3 \text{ to } 110) \text{ M}\Omega$ $(11 \text{ to } 330) \text{ M}\Omega$ $(33 \text{ to } 110) \text{ M}\Omega$ $(110 \text{ to } 330) \text{ M}\Omega$ $(0.33 \text{ to } 1.1) \text{ G}\Omega$	32 $\mu\Omega/\Omega + 0.78 m\Omega$ 24 $\mu\Omega/\Omega + 1.2 m\Omega$ 22 $\mu\Omega/\Omega + 1.1 m\Omega$ 22 $\mu\Omega/\Omega + 1.6 m\Omega$ 22 $\mu\Omega/\Omega + 1.6 m\Omega$ 22 $\mu\Omega/\Omega + 1.6 m\Omega$ 22 $\mu\Omega/\Omega + 1.6 m\Omega$ 22 $\mu\Omega/\Omega + 0.16 \Omega$ 22 $\mu\Omega/\Omega + 0.16 \Omega$ 22 $\mu\Omega/\Omega + 1.6 \Omega$ 26 $\mu\Omega/\Omega + 1.6 \Omega$ 26 $\mu\Omega/\Omega + 1.6 \Omega$ 0.11 $m\Omega/\Omega + 2.3 \Omega$ 0.19 $m\Omega/\Omega + 1.9 k\Omega$ 0.41 $m\Omega/\Omega + 2.3 k\Omega$ 0.23 % of reading + 78 $k\Omega$ 1.2 % of reading + 0.39 $M\Omega$	Comparison to Fluke 5522A/11 Multiproduct Calibrator
DC Resistance – Source ¹ (Fixed Artifacts)	0 Ω 1 Ω 1.9 Ω 10 Ω 19 Ω 100 Ω 190 Ω 1 kΩ	40 $\mu\Omega$ 95 $\mu\Omega/\Omega$ 95 $\mu\Omega/\Omega$ 23 $\mu\Omega/\Omega$ 23 $\mu\Omega/\Omega$ 10 $\mu\Omega/\Omega$ 10 $\mu\Omega/\Omega$ 6.5 $\mu\Omega/\Omega$	Comparison to Fluke 5730A/03 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Resistance – Source ¹ (Fixed Artifacts)	1.9 kΩ 10 kΩ 19 kΩ 100 kΩ 190 kΩ 1 MΩ 1.9 MΩ 10 MΩ 10 MΩ	$6.5 \ \mu\Omega/\Omega \\ 6.5 \ \mu\Omega/\Omega \\ 6.5 \ \mu\Omega/\Omega \\ 8.5 \ \mu\Omega/\Omega \\ 8.5 \ \mu\Omega/\Omega \\ 13 \ \mu\Omega/\Omega \\ 13 \ \mu\Omega/\Omega \\ 140 \ \mu\Omega/\Omega \\ 40 \ \mu\Omega/\Omega \\ 0.1 \ m\Omega/\Omega$	Comparison to Fluke 5730A/03 Multiproduct Calibrator
DC High Resistance – Source ¹ (Variable Artifact)	(1 to 1 000) MΩ (1 to 100) GΩ	0.2 % of reading 1 % of reading	Comparison to Biddle 72-6346-1 Decade Resistor
DC Resistance – Source/Measure ¹ Normal Mode – 4W	$\begin{array}{c} (0 \text{ to } 2) \Omega \\ (2 \text{ to } 20) \Omega \\ (20 \text{ to } 200) \Omega \\ (0.2 \text{ to } 2) k\Omega \\ (2 \text{ to } 20) k\Omega \\ (20 \text{ to } 200) k\Omega \\ (0.2 \text{ to } 2) M\Omega \\ (2 \text{ to } 20) M\Omega \\ (20 \text{ to } 200) M\Omega \\ (0.2 \text{ to } 2) G\Omega \end{array}$	17 $\mu\Omega/\Omega$ + 3.9 $\mu\Omega$ 9.5 $\mu\Omega/\Omega$ + 14 $\mu\Omega$ 7.8 $\mu\Omega/\Omega$ + 47 $\mu\Omega$ 8.1 $\mu\Omega/\Omega$ + 0.47 $m\Omega$ 7.8 $\mu\Omega/\Omega$ + 4.7 $m\Omega$ 8.6 $\mu\Omega/\Omega$ + 47 $m\Omega$ 9.5 $\mu\Omega/\Omega$ + 93 $m\Omega$ 27 $\mu\Omega/\Omega$ + 9.3 Ω 0.12 $m\Omega/\Omega$ + 0.93 $k\Omega$ 0.14 % of reading + 93 $k\Omega$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter, Decade Resistor
DC Resistance – Source/Measure ¹ Low Current Mode – 4W	$\begin{array}{c} (0 \text{ to } 2) \Omega \\ (2 \text{ to } 20) \Omega \\ (20 \text{ to } 200) \Omega \\ (0.2 \text{ to } 2) k\Omega \\ (2 \text{ to } 20) k\Omega \\ (20 \text{ to } 200) k\Omega \\ (0.2 \text{ to } 2) M\Omega \\ (2 \text{ to } 20) M\Omega \\ (20 \text{ to } 200) M\Omega \\ (20 \text{ to } 200) M\Omega \\ (0.2 \text{ to } 2) G\Omega \end{array}$	$\begin{array}{c} 17 \ \mu\Omega/\Omega + 3.9 \ \mu\Omega \\ 9.4 \ \mu\Omega/\Omega + 14 \ \mu\Omega \\ 8 \ \mu\Omega/\Omega + 0.14 \ m\Omega \\ 8.2 \ \mu\Omega/\Omega + 1.4 \ m\Omega \\ 7.9 \ \mu\Omega/\Omega + 14 \ m\Omega \\ 8.6 \ \mu\Omega/\Omega + 93 \ m\Omega \\ 21 \ \mu\Omega/\Omega + 0.93 \ \Omega \\ 88 \ \mu\Omega/\Omega + 93 \ \Omega \\ 0.14 \ \% \ of \ reading + 93 \ k\Omega \\ 0.14 \ \% \ of \ reading + 0.93 \ M\Omega \\ \end{array}$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter, Decade Resistor
DC Resistance – Source/Measure ¹ High Voltage Mode – 4W	$\begin{array}{c} (2 \text{ to } 20) \text{ M}\Omega \\ (20 \text{ to } 200) \text{ M}\Omega \\ (0.2 \text{ to } 2) \text{ G}\Omega \\ (2 \text{ to } 20) \text{ G}\Omega \end{array}$	$\begin{array}{c} 25 \; \mu\Omega/\Omega + 9.3 \; \Omega \\ 70 \; \mu\Omega/\Omega + 0.93 \; k\Omega \\ 0.19 \; m\Omega/\Omega + 93 \; k\Omega \\ 0.14 \; \% \; of \; reading + 9.3 \; M\Omega \end{array}$	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter, Decade Resistor
Capacitance – Source ¹ (Variable Artifact)	(50 to 200) pF 200 pF to 1.111 15 μF	0.63 % of reading + 5.8 pF 0.59 % of reading + 5.8 pF	Comparison to General Radio 1412-BC Decade Capacitor

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ (Simulation)	(0.22 to 0.4) nF (0.4 to 1.1) nF (1.1 to 3.3) nF (3.3 to 11) nF (11 to 33) nF (33 to 110) nF (110 to 330) nF (0.33 to 1.1) μF (1.1 to 3.3) μF (3.3 to 11) μF (11 to 33) μF (33 to 110) μF	0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.4 % of reading + 7.8 pF 0.21 % of reading + 7.8 pF 0.2 % of reading + 78 pF 0.21 % of reading + 78 pF 0.2 % of reading + 0.23 nF 0.21 % of reading + 0.78 nF 0.21 % of reading + 2.3 nF 0.20 % of reading + 2.3 nF 0.21 % of reading + 7.8 nF 0.32 % of reading + 7.8 nF	Comparison to Fluke 5522A/11 Multiproduct Calibrator
Capacitance – Source ¹ (Simulation)	(110 to 330) µF (0.33 to 1.1) mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	0.38 % of reading + 0.23 μF 0.35 % of reading + 0.78 μF 0.35 % of reading + 2.3 μF 0.35 % of reading + 7.8 μF 0.58 % of reading + 23 μF 0.85 % of reading + 78 μF	Comparison to Fluke 5522A/11 Multiproduct Calibrator
Capacitance – Measure ^{1,7}	1 kHz Up to 10 pF (10 to 100) pF 100 pF to 1 μF (1 to 100) μF 100 μF to 1 mF	0.48 % of reading + 50 fF 0.06 % of reading + 50 fF 0.027 % of reading + 50 fF 0.037 % of reading + 50 fF 0.25 % of reading	Comparison to General Radio 1689 RLC Digibridge
Inductance – Measure ^{1,7}	1 kHz (1 to 10) mH 10 mH to 10 H	0.026 % of reading + 0.1 μH 0.026 % of reading + 1.4 μH	Comparison to General Radio 1689 RLC Digibridge
Inductance – Source ^{1,7} (Fixed Artifacts)	1kHz 1 mH 100 mH	0.001 2 mH 0.12 mH	Comparison to General Radio 1482-E, General Radio 1482-L Standard Inductors
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz	0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 5 μ V 0.11 % of reading + 10 μ V 0.14 % of reading + 20 μ V 0.27 % of reading + 20 μ V	Comparison to Fluke 5730A/03 Multiproduct Calibrator

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 6 of 38

	Equipment	Measurem	Range	uipment I	Parameter/Equipment
AC Voltage – Source 1 AC Voltage – Source 1	freading + 4 µV freading + 4 µV freading + 4 µV reading + 4 µV reading + 5 µV reading + 20 µV reading + 7 µV freading + 7 µV freading + 7 µV reading + 20 µV reading + 20 µV reading + 45 µV reading + 45 µV reading + 15 µV freading + 10 µV freading + 10 µV freading + 80 µV reading + 0.2 mV reading + 0.4 mV reading + 0.4 mV reading + 0.05 mV reading + 0.05 mV reading + 0.06 mV reading + 2 mV reading + 2 mV reading + 2 mV reading + 2 mV reading + 3.2 mV	0.009 % of read 0.008 % of read 0.02 % of read 0.05 % of read 0.11 % of read 0.27 % of read 0.27 % of read 0.005 7 % of read 0.005 7 % of read 0.006 % of read 0.066 % of read 0.07 % of read 0.07 % of read 0.004 2 % of read 0.008 5 % of read 0.07 % of read 0.17 % of read 0.17 % of read 0.07 % of read 0.004 2 % of read 0.009 % of read 0.004 % of read 0.07 % of read 0.07 % of read 0.07 % of read 0.008 5 % of read 0.07 % of read 0.008 5 % of read 0.07 % of read 0.008 5 % of read 0.009 % of read 0.006 7 % of read 0.006 % of read 0.	(10 to 20) Hz (20 to 40) Hz (20 to 50) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (300 to 20) Hz (20 to 40) Hz (300 to 500) kHz	(10 (20 40 Hz) (20 to (AC Voltage – Source ¹

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(22 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (220 to 250) V (15 to 50) Hz (250 to 1 100) V 50 Hz to 1 kHz	0.024 % of reading + 4 mV 0.009 % of reading + 1.5 mV 0.005 2 % of reading + 0.6 mV 0.008 % of reading + 1 mV 0.015 % of reading + 2.5 mV 0.09 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 80 mV 0.03 % of reading + 16 mV 0.007 % of reading + 3.5 mV	Comparison to Fluke 5730A/03 Multiproduct Calibrator
AC Voltage – Source ¹	(220 to 330) V (1 to 10) kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (330 to 1 020) V (1 to 5) kHz (5 to 10) kHz	0.016 % of reading + 4.7 mV 0.02 % of reading + 4.7 mV 0.025 % of reading + 4.7 mV 0.16 % of reading + 39 mV 0.02 % of reading + 7.8 mV 0.023 % of reading + 7.8 mV	Comparison to Fluke 5522A/11 Multiproduct Calibrator
AC Voltage – Source ¹ (Wideband Amplitude)	30 Hz to 500 kHz (0.3 to 1.1) mV (1.1 to 3) mV (3 to 11) mV (11 to 33) mV (33 to 110) mV (110 to 330) mV (0.33 to 1.1) V (1.1 to 3.5) V Up to 1.1 mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (1.2 to 11.999) kHz (12 to 119.99) kHz	0.62 % of reading + 0.78 μV 0.54 % of reading + 1.2 μV 0.54 % of reading + 3.1 μV 0.47 % of reading + 6.2 μV 0.47 % of reading + 16 μV 0.39 % of reading + 39 μV 0.39 % of reading + 0.16 mV 0.31 % of reading + 0.19 mV 0.23 % of reading 0.078 % of reading 0.16 % of reading + 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.47 % of reading + 1.2 μV 0.47 % of reading + 1.2 μV	Comparison to Fluke 5730A/03 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Wideband Amplitude Flatness – Source ¹ (1 kHz reference)	(1.1 to 3.3) mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (1.2 to 119.99) kHz (12 to 119.99) kHz 120 kHz to 1.199 9 MHz (2 to 12) MHz (2 to 20) MHz (20 to 30) MHz (3.3 to 11) mV (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 119.99) kHz (12 to 119.99) kHz (12 to 119.99) kHz (2 to 12) MHz (2 to 12) MHz (2 to 20) MHz (20 to 30) MHz (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (10 to 30) Hz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 11.999) MHz (12 to 11.999) MHz (12 to 11.999) MHz (12 to 11.999) MHz (12 to 20) MHz (20 to 30) MHz (11 to 16.5) mV (1.2 to 2) MHz (20 to 30) MHz	0.23 % of reading 0.078 % of reading + 1.2 μV 0.078 % of reading + 1.2 μV 0.23 % of reading + 1.2 μV 0.39 % of reading + 1.2 μV 1.2 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading 1.2 μV 0.16 % of reading + 1.2 μV 0.31 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading + 1.2 μV 0.78 % of reading 0.078 % of reading	Comparison to Fluke 5730A/03 Multiproduct Calibrator
	(20 to 30) MHz	0.78 % reading + 1.2 μV	

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 9 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(33 to 110) mV (10 to 30) Hz	0.23 % of reading	
	(30 to 119.99) Hz	0.078 % of reading	
	120 Hz to 1.199 9 kHz	0.0 <mark>78 % o</mark> f reading	
	(1.2 to 11.999) kHz	0.078 % of reading	
	(12 to 119.99) kHz	0.078 % of reading	
	120 kHz to 1.199 9 MHz	0.078 % of reading + 1.2 μV	
	(33 to 55) mV	1 / /	
	(1.2 to 2) MHz	0.16 % reading + 1.2 μV	
	(2 to 11.9) MHz	0.23 % reading + 1.2 μV	
	(12 to 20) MHz	0.39% reading + 1.2 μ V	
	(20 to 30) MHz	0.85% reading $+ 1.2 \mu V$	
	(55 to 110) mV		
	(1.2 to 2) MHz	0.078% reading + 1.2 μ V	
	(2 to 11.9) MHz	0.16 % reading + 1.2 μV	
	(12 to 20) MHz	0.31 % reading + 1.2 μV	
	(20 to 30) MHz	0.78 % reading + 1.2 μV	
	(110 to 330) mV		
	(10 to 30) Hz	0.23 % of reading	
Wideband Amplitude	(30 to 119.99) Hz	0.078 % of reading	Comparison to
Flatness – Source ¹	120 Hz to 1.199 9 kHz	0.078 % of reading	Fluke 5730A/03
(1 kHz reference)	(1.2 to 11.999) kHz	0.078 % of reading	Multiproduct Calibrator
	(12 to 119.99) kHz	0.078 % of reading	
	120 kHz to 1.199 9 MHz	0.078 % of reading $+ 1.2 \mu V$	
	(110 to 165) mV		
	(1.2 to 2) MHz	0.16 % reading + 1.2 μV	
	(2 to 11.9) MHz	0.23 % reading + 1.2 μV	
	(12 to 20) MHz	0.39 % reading + 1.2 μV	
	(20 to 30) MHz	0.85 % reading + 1.2 μV	
	(165 to 330) mV		
	(1.2 to 2) MHz	0.078 % reading + $1.2 \mu V$	
	(2 to 11.9) MHz	0.16% reading + 1.2 μ V	
	(12 to 20) MHz	0.31% reading + 1.2 μ V	
	(20 to 30) MHz	0.78 % reading + 1.2 μV	
	(0.33 to 1.1) V	1 2 2 2 4 2 11	
	(10 to 30) Hz	0.23 % of reading	
	(30 to 119.99) Hz	0.078 % of reading	
	120 Hz to 1.199 9 kHz	0.078 % of reading	
	(1.2 to 11.999) kHz	0.078 % of reading	
	(12 to 119.99) kHz	0.078 % of reading	
	120 Hz to 1.199 9 MHz	0.078% of reading + 1.2 μ V	

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 10 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Wideband Amplitude Flatness – Source ¹ (1 kHz reference)	(0.33 to 0.55) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (0.55 to 1.1) V (1.2 to 2) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (20 to 30) MHz (30 to 119.99) Hz 120 Hz to 1.199 9 kHz (12 to 119.99) MHz (2 to 11.9) MHz (2 to 11.9) MHz (2 to 11.9) MHz (12 to 20) MHz (20 to 30) MHz (1.75 to 3.5) V (1.2 to 2) MHz (2 to 11.9) MHz (2 to 11.9) MHz (12 to 20) MHz	0.16 % reading + 1.2 μV 0.23 % reading + 1.2 μV 0.39 % reading + 1.2 μV 0.85 % reading + 1.2 μV 0.078 % reading + 1.2 μV 0.16 % reading + 1.2 μV 0.31 % reading + 1.2 μV 0.78 % reading + 1.2 μV 0.78 % reading + 1.2 μV 0.78 % of reading 0.078 % reading + 1.2 μV 0.23 % reading + 1.2 μV 0.39 % reading + 1.2 μV 0.39 % reading + 1.2 μV 0.39 % reading + 1.2 μV 0.16 % reading + 1.2 μV 0.16 % reading + 1.2 μV 0.16 % reading + 1.2 μV	Comparison to Fluke 5730A/03 Multiproduct Calibrator
AC Voltage – Measure ¹	(20 to 30) MHz Up to 200 mV (1 to 10) Hz (0.2 to 200) V (1 to 10) Hz (200 to 1 000) V (1 to 10) Hz	0.78 % reading + 1.2 μV 0.017 % of reading + 70 μV 0.015 % of reading + 60 μV 0.015 % of reading + 70 μV	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0.6 to 2.2) mV (10 to 20) Hz	0.17 % of reading + 1.3 μV	
	(20 to 40) Hz	0.17% of reading $+1.3 \mu V$ 0.074% of reading $+1.3 \mu V$	
	40 Hz to 20 kHz	0.074% of reading + 1.3 μ V 0.042% of reading + 1.3 μ V	
	(20 to 50) kHz	0.042% of reading + 1.3 μ V 0.081% of reading + 2 μ V	
	(50 to 100) kHz	0.12% of reading + 2.5 μ V	
	(100 to 300) kHz	0.23% of reading $+4 \mu V$	
	(300 to 500) kHz	0.24% of reading $+8 \mu V$	
	500 kHz to 1 MHz	0.35% of reading $+8\mu V$	
	(2.2 to 7) mV		
	(10 to 20) Hz	0.085 % of reading + 1.3 μ V	
	(20 to 40) Hz	0.037% of reading + 1.3 μ V	
	40 Hz to 20 kHz	0.021 % of reading + 1.3 μV	
	(20 to 50) kHz	0.04% of reading $+ 2 \mu V$	
	(50 to 100) kHz	0.06% of reading $+2.5 \mu V$	
	(100 to 300) kHz	0.12% of reading $+4 \mu V$	Comparison to
	(300 to 500) kHz	0.13 % of reading + 8 μ V	
AC Voltage – Measure ¹	500 kHz to 1 MHz	0.23% of reading $+ 8 \mu V$	Fluke 5790A-03
The vertings Thomas and	(7 to 22) mV		AC Measurement Standard
	(10 to 20) Hz	0.029% of reading + 1.3 μ V	
	(20 to 40) Hz	0.019 % of reading + 1.3 μV	
	40 Hz to 20 kHz	$0.011 \% \text{ of reading} + 1.3 \mu\text{V}$	
	(20 to 50) kHz	0.021% of reading + 2 μ V	
	(50 to 100) kHz	0.031% of reading $+2.5 \mu V$	
	(100 to 300) kHz (300 to 500) kHz	0.081 % of reading + 4 μV 0.089 % of reading + 8 μV	
	500 kHz to 1 MHz	0.089% of reading + 8 μ V 0.17% of reading + 8 μ V	
	(22 to 70) mV	0.17 76 of feating + 8 μ v	
	(10 to 20) Hz	0.024 % of reading + 1.5 μ V	
	(20 to 40) Hz	0.012% of reading + 1.5 μ V	
	40 Hz to 20 kHz	$65 \mu\text{V/V} + 1.5 \mu\text{V}$	
	(20 to 50) kHz	0.013 % of reading + 2 μ V	
	(50 to 100) kHz	0.026 % of reading + $2.5 \mu V$	
	(100 to 300) kHz	0.051 % of reading + 4 μ V	
	(300 to 500) kHz	0.067 % of reading $+ 8 \mu V$	
	500 kHz to 1 MHz	0.11 % of reading + 8 μV	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure ¹	(70 to 220) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (220 to 700) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (20 to 50) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (50 to 100) kHz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (50 to 100) kHz (50 to 100) kHz (100 to 300) kHz (20 to 50) kHz (20 to 50) kHz (300 to 500) kHz	0.021 % of reading + 1.5 μV 85 μV/V + 1.5 μV 38 μV/V + 1.5 μV 69 μV/V + 2 μV 0.016 % of reading + 2.5 μV 0.025 % of reading + 4 μV 0.038 % of reading + 8 μV 0.1 % of reading + 1.5 μV 76 μV/V + 1.5 μV 33 μV/V + 1.5 μV 79 μV/V + 2.5 μV 0.018 % of reading + 4 μV 0.03 % of reading + 8 μV 0.096 % of reading + 8 μV 0.096 % of reading + 8 μV 0.096 % of reading + 8 μV 0.018 % of reading + 8 μV 0.096 % of reading + 1.5 μV 76 μV/V + 1.5 μV 33 μV/V + 1.5 μV 76 μV/V + 2.5 μV 0.018 % of reading + 4 μV 0.03 % of reading + 8 μV 0.018 % of reading + 8 μV 0.018 % of reading + 8 μV 0.018 % of reading + 8 μV 0.02 % of reading + 8 μV 0.02 % of reading 67 μV/V 24 μV/V 48 μV/V 81 μV/V 0.02 % of reading 0.04 % of reading	Comparison to Fluke 5790A-03 AC Measurement Standard

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(7 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 70) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (70 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (300 to 500) kHz (50 to 100) kHz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (700 to 1 000) V (10 to 20) Hz (20 to 40) Hz (20 to 40) Hz (20 to 50) kHz (50 to 100) kHz (700 to 1 000) V (10 to 20) Hz (20 to 40) Hz (20 to 50) kHz	0.02 % of reading 67 μV/V 27 μV/V 48 μV/V 81 μV/V 0.02 % of reading 0.04 % of reading 0.12 % of reading 0.12 % of reading 68 μV/V 32 μV/V 57 μV/V 94 μV/V 0.02 % of reading 0.12 % of reading 0.02 % of reading 68 μV/V 31 μV/V 69 μV/V 98 μV/V 0.02 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.02 % of reading 0.05 % of reading	Comparison to Fluke 5790A-03 AC Measurement Standard

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Wideband Amplitude Flatness – Measure ¹ (1 kHz reference)	(0.6 to 2.2) mV 50 kHz to 1.2 MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (2.2 to 7) mV 50 kHz to 1.2 MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (7 to 22) mV 50 kHz to 1.2 MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (21 to 22) MHz (22 to 10) MHz (20 to 30) MHz (20 to 30) MHz (21 to 20) MHz (22 to 10) MHz (22 to 10) MHz (22 to 10) MHz (23 to 20) MHz (24 to 10) MHz (25 to 20) MHz (26 to 30) MHz (10 to 20) MHz (10 to 20) MHz (10 to 20) MHz (10 to 20) MHz	0.07 % of reading + 1 μV 0.07 % of reading + 1 μV 0.17 % of reading + 1 μV 0.3 % of reading + 1 μV 0.7 % of reading + 2 μV 0.07 % of reading + 1 μV 0.07 % of reading + 1 μV 0.1% of reading + 1 μV 0.17 % of reading + 1 μV 0.17 % of reading + 1 μV 0.37 % of reading + 1 μV 0.37 % of reading 0.07 % of reading 0.10 % of reading 0.10 % of reading 0.10 % of reading 0.15 % of reading	Comparison to Fluke 5790A-03 AC Measurement Standard

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Wideband Amplitude Flatness – Measure ¹ (1 kHz reference)	(0.7 to 2.2) V 50 kHz to 1.2 MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (2.2 to 7) V 50 kHz to 1.2 MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz	0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading 0.05 % of reading 0.05 % of reading 0.15 % of reading 0.15 % of reading 0.15 % of reading 0.15 % of reading 0.35 % of reading	Comparison to Fluke 5790A-03 AC Measurement Standard
AC High Voltage – Measure ¹	(0.7 to 9) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz (450 to 600) Hz (9 to 10) kV 10 mHz to 10 Hz (10 to 30) Hz (30 to 50) Hz (50 to 70) Hz (70 to 100) Hz (100 to 200) Hz (200 to 450) Hz (450 to 600) Hz	0.15 % reading + 0.17 V 0.15 % reading + 0.17 V 0.14 % reading + 0.17 V 0.48 % reading + 0.17 V 0.87 % reading + 0.17 V 0.15 % reading + 0.69 V 0.15 % reading + 0.69 V 0.14 % reading + 0.69 V 0.18 % reading + 0.69 V 0.19 % reading + 0.69 V 0.19 % reading + 0.69 V 0.19 % reading + 0.69 V	Comparison to Vitrek 4700 High Voltage Meter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	Up to 220 μA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 2.2) A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 3) A (10 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz	0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.011 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 65 nA 0.025 % of reading + 40 nA 0.016 % of reading + 35 nA 0.011 % of reading + 3.5 nA 0.011 % of reading + 0.11 μA 0.11 % of reading + 0.65 μA 0.025 % of reading + 0.4 μA 0.016 % of reading + 0.35 μA 0.011 % of reading + 0.35 μA 0.011 % of reading + 0.55 μA 0.11 % of reading + 5 μA 0.025 % of reading + 5 μA 0.016 % of reading + 3.5 μA 0.011 % of reading + 3.5 μA 0.016 % of reading + 10 μA 0.025 % of reading + 10 μA 0.025 % of reading + 10 μA	Comparison to Fluke 5730A/03 Multiproduct Calibrator
AC Current – Source ¹	(5 to 10) kHz (3 to 11) A (45 to 100) Hz (0.1 to 1) kHz (1 to 5) kHz (11 to 20.5) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	2.5 % of reading + 5 mA 0.049 % of reading + 1.6 mA 0.079 % of reading + 1.6 mA 2.3 % of reading + 1.6 mA 0.095 % of reading + 3.9 mA 0.12 % of reading + 3.9 mA 2.3 % of reading + 3.9 mA	Comparison to Fluke 5522A/11 Multiproduct Calibrator

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

ANAB

ANSI National Accreditation Board

Page 17 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Clamp-on Ammeters (Toroidal Type) Transformer Type Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.31 % of reading + 26 mA 0.84 % of reading + 47 mA 0.35 % of reading + 0.12 A 1.2 % of reading + 0.22 A	Comparison to Fluke 5522A/11 Multiproduct Calibrator, 50-turn Coil
AC Clamp-on Ammeters (Non-Toroidal Type) Hall Effect Sensor ¹	(20 to 150) A (45 to 65) Hz (65 to 440) Hz (150 to 1 000) A (45 to 65) Hz (65 to 440) Hz	0.58 % of reading + 0.25 A 1.1 % of reading + 0.25 A 0.6 % of reading + 0.9 A 1.3 % of reading + 0.92 A	Comparison to Fluke 5522A/11 Multiproduct Calibrator, 50-turn Coil
AC Current – Measure ¹	Up to 200 μA 1 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (0.2 to 2) mA (1 to 10) Hz 10 Hz to 10 kHz (30 to 100) kHz (30 to 100) kHz (2 to 20) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (30 to 100) kHz (30 to 100) kHz (10 to 30) kHz (20 to 200) mA 1 Hz to 10 Hz 10 Hz to 10 kHz (10 to 30) kHz (10 to 30) kHz (2 to 2) A 10 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz	0.031 % of reading + 20 nA 0.071 % of reading + 20 nA 0.4 % of reading + 20 nA 0.031 % of reading + 0.2 μA 0.03 % of reading + 0.2 μA 0.071 % of reading + 0.2 μA 0.4 % of reading + 0.2 μA 0.4 % of reading + 2 μA 0.03 % of reading + 2 μA 0.071 % of reading + 2 μA 0.071 % of reading + 2 μA 0.071 % of reading + 2 μA 0.04 % of reading + 2 μA 0.04 % of reading + 20 μA 0.029 % of reading + 20 μA 0.063 % of reading + 20 μA 0.063 % of reading + 0.2 mA 0.074 % of reading + 0.2 mA 0.074 % of reading + 0.2 mA 0.082 % of reading + 2 mA 0.082 % of reading + 2 mA	Comparison to Fluke 8508A opt 001 8.5 Digit Multimeter

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(1 to 10) mA	0.002 % of reading 0.003 % of reading 0.004 % of reading 0.006 % of reading 0.002 % of reading 0.003 % of reading 0.005 % of reading 0.007 % of reading 0.004 % of reading 0.004 % of reading 0.007 % of reading 0.007 % of reading 0.007 % of reading 0.010 % of reading 0.002 % of reading 0.003 % of reading 0.005 % of reading 0.005 % of reading 0.005 % of reading 0.006 % of reading 0.007 % of reading 0.007 % of reading 0.007 % of reading 0.008 % of reading 0.009 % of reading	Comparison to Fluke 5790A-03 AC Measurement Standard, Fluke A40 Current Shunts
DC Power – Source ¹ 330 µW to 330 mA	11 µW to 1.1 mW (1.1 to 110) mW 110 mW to 110 W	0.024 % of reading 0.027 % of reading 0.024 % of reading	
330 mA to 3 A	(110 to 330) W 11 μW to 110 mW 110 mW to 990 W 990 W to 3 kW	0.018 % of reading 0.044 % of reading 0.053 % of reading 0.01 % of reading	Comparison to Fluke 5520A Multiproduct Calibrator
(3 to 20.5) A	99 mW to 0.99 W 0.99 W to 6.8 kW (6.8 to 20.5) kW	0.088 % of reading 0.07 % of reading 0.04 % of reading	

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

ANAR

ANSI National Accreditation Board

Page 19 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Power – Source 1,2,8			
PF = 1			
(3.3 to 9) mA	(10 to 65) Hz		
	110 μW to 3 mW	0.13 % of reading	
	3 mW to 9 W	0.0 <mark>77 % of reading</mark>	
(9 to 33) mA	(10 to 65) Hz		
	300 μW to 10 mW	0.089 % of reading	
	10 mW to 33 W	0.077 % of reading	
(33 to 90) mA	(10 to 65) Hz		
	(1 to 30) mW	0.071 % of reading	
	30 mW to 90 W	0.057 % of reading	
(90 to 330) mA		A A	Comparison to
	(3 to 100) mW	0.089 % of reading	Fluke 5520A
	100 mW to 300 W	0.078 % of reading	Multiproduct Calibrator
(330 to 900) mA	(10 to 65) Hz		
	(11 to 300) mW	0.071 % of reading	
	300 mW to 900 W	0.081 % of reading	
900 mA to 2.2 A	(10 to 65) Hz		
	(30 to 720) mW	0.089 % of reading	
	0.72 W to 2 kW	0.079 % of reading	
(2.2 to 4.5) A	(10 to 65) Hz		
	80 mW to 1.4 W	0.088 % of reading	
	1.4 W to 4.5 kW	0.18 % of reading	
(4.5 to 20.5) A			
	150 mW to 20kW	0.17 % of reading	
	Type B		
	(600 to 800) °C	0.35 °C	
	(800 to 1 000) °C	0.28 °C	
	(1 000 to 1 550) °C	0.24 °C	
Electrical Simulation of	(1 550 to 1 820) °C	0.26 °C	Comparison to
Thermocouple Indicating	Type C		Fluke 5522A/11
Devices – Source/Measure ¹	(0 to 150) °C	0.24 °C	Multiproduct Calibrator
	(150 to 650) °C	0.21 °C	
	(650 to 1000) °C	0.24 °C	
	(1 000 to 1 800) °C	0.39 °C	
	(1 800 to 2 316) °C	0.65 °C	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type E (-250 to -100) °C (-100 to -25) °C (-25 to 350) °C (350 to 650) °C (650 to 1 000) °C Type J (-210 to -100) °C (-100 to -30) °C (-30 to 150) °C (150 to 760) °C (760 to 1 200) °C Type K (-200 to -100) °C (-100 to -25) °C (-25 to 120) °C (120 to 1 000) °C (120 to 1 000) °C (1000 to 1 372) °C Type L (-200 to -100) °C (-100 to 800) °C (800 to 900) °C Type N (-200 to -100) °C (-25 to 120) °C (120 to 410) °C (410 to 1 300) °C Type R (0 to 250) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type S (0 to 250) °C (250 to 1 000) °C (1 000 to 1 400) °C (1 400 to 1 767) °C	0.39 °C 0.13 °C 0.12 °C 0.13 °C 0.17 °C 0.21 °C 0.13 °C 0.12 °C 0.14 °C 0.18 °C 0.26 °C 0.15 °C 0.21 °C 0.31 °C 0.21 °C 0.14 °C 0.18 °C 0.21 °C 0.12 °C 0.21 °C 0.21 °C 0.21 °C 0.14 °C 0.15 °C 0.15 °C 0.15 °C 0.15 °C 0.15 °C 0.15 °C 0.15 °C 0.15 °C 0.21 °C 0.21 °C 0.30 °C 0.29 °C 0.26 °C 0.32 °C 0.36 °C 0.36 °C	Comparison to Fluke 5522A/11 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicating Devices – Source/Measure ¹	Type T (-250 to -150) °C (-150 to 0) °C (0 to 120) °C (120 to 400) °C Type U (-200 to 0) °C (0 to 600) °C	0.49 °C 0.19 °C 0.13 °C 0.12 °C 0.44 °C 0.21 °C	Comparison to Fluke 5522A/11 Multiproduct Calibrator
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C (-200 to -80) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (400 to 600) °C (400 to 600) °C (600 to 630) °C (-80 to 0) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (-80 to 0) °C (-80 to 0) °C (-80 to 0) °C (-80 to 0) °C (300 to 400) °C (400 to 600) °C	0.039 °C 0.039 °C 0.054 °C 0.07 °C 0.078 °C 0.093 °C 0.031 °C 0.031 °C 0.039 °C 0.093 °C 0.11 °C 0.11 °C 0.12 °C 0.039 °C 0.039 °C 0.047 °C 0.062 °C 0.062 °C 0.07 °C 0.085 °C	Comparison to Fluke 5522A/11 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicating Devices – Source ¹	Pt 385, 1 kΩ (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 630) °C (400 to 630) °C Pt 3916, 100 Ω (-200 to -190) °C (-190 to -80) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 630) °C Pt 3926, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (100 to 300) °C	0.023 °C 0.023 °C 0.031 °C 0.039 °C 0.054 °C 0.054 °C 0.18 °C 0.19 °C 0.031 °C 0.039 °C 0.047 °C 0.054 °C 0.07 °C 0.078 °C 0.089 °C 0.078 °C 0.078 °C 0.039 °C 0.078 °C 0.078 °C 0.079 °C 0.079 °C 0.079 °C 0.079 °C 0.079 °C	
	(300 to 400) °C (400 to 630) °C PtNi 385, 120 Ω (-80 to 0) °C (0 to 100) °C (100 to 260) °C Cu 427, 10 Ω (-100 to 260) °C	0.078 °C 0.093 °C 0.062 °C 0.062 °C 0.1 °C 0.23 °C	
Phase – Source ¹	(0 to 90)° (10 to 65) Hz (65 to 500) Hz 500 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz	0.11° 0.21° 0.39° 1.9° 3.9° 7.8°	Comparison to Fluke 5522A/11 Multiproduct Calibrator

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 23 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase – Measure ¹ (0 to 360)° (Sine Wave)	10 mV to 350 V (5 to 10) Hz 10 Hz to 50 kHz 10 mV to 12.5 V (50 to 100) kHz (12.5 to 350) V 10 Hz to 10 kHz	0.23° 0.051° 0.23° 0.051°	Comparison to Clarke-Hess 6000 Precision Phase Meter
	(-130 to 130) V 10 Hz to 10 kHz 1 mVp-p to 6.6 Vp-p 10 Hz to 1 kHz 1 mVp-p to 130 Vp-p (1 to 10) kHz 1 mVp-p to 130 Vp-p 1 ns to 20 ms 50 ms 100 ms 200 ms 500 ms 1 s 2 s 5 s 5 mVp-p to 2.5 Vp-p (200 to 300) ps	0.22 % of reading + 31 μV 0.12 % of reading + 31 μV 0.14 % of reading + 31 μV 0.19 % of reading + 31 μV 0.000 22 % reading 0.005 9 % reading 0.009 8 % reading 0.018 % reading 0.041 % reading 0.08 % reading 0.16 % reading 0.16 % reading 0.139 % reading	Comparison to Fluke 5522A/11 Multiproduct Calibrator

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bandwidth/Flatness – Measure (50 kHz Reference)	5 mVp-p to 5.5 Vp-p 50 kHz 100 kHz to 100 MHz (100 to 300) MHz (300 to 600) MHz 5 mVp-p to 3.5 Vp-p 600 MHz to 1.1 GHz 5 mVp-p to 5.5 Vp-p 50 kHz to 100 MHz (100 to 300) MHz (300 to 600) MHz 5 mVp-p to 3.5 Vp-p 600 MHz to 1.1 GHz	1.8 % of reading + 0.23 mV 2.8 % of reading + 0.23 mV 3.2 % of reading + 0.23 mV 4.7 % of reading + 0.23 mV 5.5 % of reading + 0.23 mV 1.8 % of reading + 78 μV 3.2 % of reading + 78 μV 4 % of reading + 78 μV	Comparison to Fluke 5522A/11 Multiproduct Calibrator
Input Impedance – Measure into 50 Ω load into 1 MΩ load		0.082 % of reading 0.081 % of reading	
Input Capacitance – Measure	(5 to 50) pF	3.9 % of reading + 0.39 pF	
	10 Hz to 10 kHz 1.8 mVp-p to 2.5 Vp-p 1.8 mVp-p to 55 Vp-p 10 Hz to 10 kHz	2.3 % of reading + 78 μV 2.3 % of reading + 78 μV 0.001 9 % of reading + 12 mHz	
Oscilloscopes ^{1,2} Bandwidth/Flatness – Measure	(5 to 89.3) mVp-p (1.1 to 4) GHz 89.3 mVp-p to 3.17 Vp-p (1.1 to 4) GHz	5.7 % of reading 3.3 % of reading	Comparison to Fluke 96720A RF Reference Source, Fluke 96040A-50 Low Phase Noise Reference Source

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 25 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
RF Absolute Power – Source ^{1,3}	(-35 to 14) dBm 100 MHz to 2.4 GHz (2.4 to 8) GHz (8 to 18) GHz (18 to 26.5) GHz	0.08 dB 0.11 dB 0.14 dB 0.17 dB	Comparison to Fluke 96720A RF Reference Source, R&S NRP-Z55(x2) Power Sensor, Agilent 11667B Power Splitter, Sucoflex 102EA 40 GHz Test Cable
RF Absolute Power – Measure ¹	1 mW Reference 50 MHz	0.03 % of reading	Comparison to HP 8478B Power Sensor, HP 432A Power Meter
RF Absolute Power – Measure ^{1,3}	(-65 to -35) dBm $(> 0.01 \text{ to } \le 0.03) \text{ GHz}$ $(> 0.03 \text{ to } \le 4.00) \text{ GHz}$ $(> 4.00 \text{ to } \le 8.00) \text{ GHz}$ $(> 8.00 \text{ to } \le 10.00) \text{ GHz}$ $(> 10.00 \text{ to } \le 13.00) \text{ GHz}$ $(> 13.00 \text{ to } \le 15.00) \text{ GHz}$ $(> 15.00 \text{ to } \le 18.00) \text{ GHz}$	2.8 % of reading 1.9 % of reading 2.3 % of reading 2.4 % of reading 3 % of reading 3.5 % of reading 3.8 % of reading	Comparison to HP 8484A Power Sensor, Agilent E4419B Power Meter
RF Absolute Power – Measure ^{1,3}	(-35 to 20) dBm DC to 100 MHz (> 0.1 to \leq 2.4) GHz (> 2.4 to \leq 8) GHz (> 8 to \leq 12.4) GHz (> 12.4 to \leq 18) GHz (> 18 to \leq 26.5) GHz (> 26.5 to \leq 33) GHz (> 33 to \leq 40) GHz	0.04 dB 0.048 dB 0.054 dB 0.063 dB 0.082 dB 0.086 dB 0.11 dB 0.11 dB	Comparison to Fluke 96720A RF Reference Source, R&S NRP-Z55(x2) Power Sensor
Tuned RF Absolute Power – Measure ³	2.5 MHz to 26.5 GHz (-127 to -110) dBm (-110 to -90) dBm (-90 to -80) dBm (-80 to -50) dBm (-50 to -40) dBm (-40 to -10) dBm (-10 to 0) dBm (0 to 10) dBm	0.54 dB 0.39 dB 0.37 dB 0.34 dB 0.33 dB 0.31 dB 0.3 dB 0.3 dB	Comparison to HP 8902A Measuring Receiver, HP 11722A Power Sensor, HP 11792A Microwave Converter, HP 11793A Microwave Converter

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 26 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Amplitude Modulation – AM Depth Measure ¹			
Rate: 50 Hz to 10 kHz	150 kHz to 10 MHz (5 to 40) % Depth (40 to 99) % Depth	0.85 % Depth 2.3 % Depth	
Rate: (20 to 50) Hz	150 kHz to 10 MHz (5 to 40) % Depth (40 to 99) % Depth	1.3 % Depth 3.3 % Depth	Comparison to HP 8902A Measuring Receiver, HP 11722A
Rate: 50 Hz to 50 kHz	10 MHz to 1.3 GHz (5 to 40) % Depth (40 to 99) % Depth	0.45 % Depth 1.3 % Depth	Power Sensor, HP 11792A Microwave Converter, HP 11793A Microwave Converter
Rate: 50 Hz to 50 kHz	(1.3 to 26.5) GHz (5 to 40) % Depth (40 to 99) % Depth	0.65 % Depth 1.8 % Depth	
Rate: (20 to 50) Hz or (50 to 100) kHz	10 MHz to 26.5 GHz (5 to 40) % Depth (40 to 99) % Depth	1.3 % Depth 3.3 % Depth	
Frequency Modulation – Measure ^{1,7}			
Rate: 20 Hz to 10 kHz	250 kHz to 10 MHz Dev: ≤ 40 kHz pk	2 % of reading	Comparison to HP 8902A
Rate: 50 Hz to 100 kHz	10 MHz to 1.3 GHz Dev: ≤ 400 kHz pk 10 MHz to 26.5 GHz	1 % of reading	Measuring Receiver, HP 11722A Power Sensor,
	Dev: ≤ 400 kHz pk	1 % of reading	HP 11792A Microwave Converter, HP 11793A
Rate: 20 Hz to 200 kHz	10 MHz to 1.3 GHz Dev: ≤ 400 kHz pk 10 MHz to 26.5 GHz	6 % of reading	Microwave Converter
	Dev: ≤ 400 kHz pk	6 % of reading	

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase Modulation – Measure ^{1,7} Rate: 200 Hz to 10 kHz Rate: 200 Hz to 20 kHz	150 kHz to 10 MHz 10 MHz to 26.5 GHz	5 % of reading 4 % of reading	Comparison to HP 8902A Measuring Receiver, HP 11722A Power Sensor, HP 11792A Microwave Converter, HP 11793A Microwave Converter
Power Range Accuracy – Measure	3 μW to 100 mW	0.31 % of reading	Comparison to HP 11683A Power Meter
Distortion – Measure	20 Hz to 20 kHz (-80 to 0) dB (20 to 100) kHz (-65 to 0) dB	1.3 dB 2.4 dB	Comparison to HP 8903B Audio Analyzer
RF Amplitude Frequency Response – Measure	9 kHz to 2.9 GHz (2.90 to 6.46) GHz (6.46 to 13) GHz (13 to 19.7) GHz (19.7 to 22) GHz	1.1 dB 1.5 dB 2.1 dB 3.1 dB 3.1 dB	Comparison to HP 8562A Spectrum Analyzer
Leveled Sine Wave Output – Absolute Amplitude Accuracy Level ³	10 Hz to 4 GHz (-130 to -94) dBm (-94 to -74) dBm (-74 to -17) dBm (-17 to 24) dBm	1.1 dB 0.68 dB 0.34 dB 0.2 dB	Comparison to Fluke 96720A RF Reference Source, Fluke 96040A-50 Low Phase Noise Reference Source
Leveled Sine Wave Output – Absolute Amplitude Accuracy Level ³	10 Hz to 4 GHz (-120 to -100) dBm (-100 to -80) dBm (-80 to 18) dBm	1.1 dB 0.67 dB 0.34 dB	Comparison to Fluke 96720A RF Reference Source, Fluke 96040A-75 Low Phase Noise Reference Source

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 28 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
S11/S22 Reflection Magnitude – Measure ^{1,6} (Linear)	50 MHz to 2 GHz ≤ 0.25 lin (> 0.25 to 0.5) lin (> 0.5 to $≤ 0.7$) lin (> 0.7 to $≤ 1$) lin (2 to 8) GHz ≤ 0.25 lin (> 0.25 to 0.5) lin (> 0.5 to $≤ 0.7$) lin (> 0.7 to $≤ 1$) lin	0.013 0.012 0.012 0.013 0.013 0.012 0.012 0.014	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit
S11/S22 Reflection Magnitude – Measure ^{1,6} (Linear)	(8 to 20) GHz $\leq 0.25 \text{ lin}$ (> 0.25 to 0.5) lin (> 0.5 to \leq 0.7) lin (> 0.7 to \leq 1) lin (20 to 40) GHz \leq 0.25 lin (> 0.25 to 0.5) lin (> 0.5 to \leq 0.7) lin (> 0.7 to \leq 1) lin	0.013 0.012 0.012 0.014 0.022 0.022 0.022 0.023 0.026	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit
S11/S22 Reflection Phase – Measure ¹ (Linear)	$\begin{array}{c} 50 \text{ MHz to 2 GHz} \\ \leq 0.25 \text{ lin} \\ (> 0.25 \text{ to } 0.5) \text{ lin} \\ (> 0.5 \text{ to } \leq 0.7) \text{ lin} \\ (> 0.7 \text{ to } \leq 1) \text{ lin} \\ (> 0.7 \text{ to } \leq 1) \text{ lin} \\ (2 \text{ to } 8) \text{ GHz} \\ \leq 0.25 \text{ lin} \\ (> 0.25 \text{ to } 0.5) \text{ lin} \\ (> 0.5 \text{ to } \leq 0.7) \text{ lin} \\ (> 0.7 \text{ to } \leq 1) \text{ lin} \\ (8 \text{ to } 20) \text{ GHz} \\ \leq 0.25 \text{ lin} \\ (> 0.25 \text{ to } 0.5) \text{ lin} \\ (> 0.5 \text{ to } \leq 0.7) \text{ lin} \\ (> 0.7 \text{ to } \leq 1) \text{ lin} \\ (20 \text{ to } 40) \text{ GHz} \\ \leq 0.25 \text{ lin} \\ (> 0.25 \text{ to } 0.5) \text{ lin} \\ (> 0.5 \text{ to } \leq 0.7) \text{ lin} \\ (> 0.5 \text{ to } \leq 0.7) \text{ lin} \\ (> 0.7 \text{ to } \leq 1) \text{ lin} \\ $	2.7° 1.4° 1.0° 0.9° 2.7° 1.4° 1.1° 1.1° 1.1° 4.9° 2.6° 2.1° 2°	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
S21/S12 Transmission Magnitude – Measure ¹ (dB)	50 MHz to 2 GHz $(-90 \text{ to} \le -80) \text{ dB}$ $(-80 \text{ to} \le -70) \text{ dB}$ $(-70 \text{ to} \le -60) \text{ dB}$ $(-60 \text{ to} \le -50) \text{ dB}$ $(-50 \text{ to} \le -40) \text{ dB}$ $(-40 \text{ to} \le -30) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-20 \text{ to} \le -10) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$	0.35 dB 0.18 dB 0.15 dB 0.15 dB 0.14 dB 0.14 dB 0.14 dB 0.14 dB 0.14 dB	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit
S21/S12 Transmission Magnitude – Measure ¹ (dB)	$(2 \text{ to } 8) \text{ GHz}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-80 \text{ to } \leq -70) \text{ dB}$ $(-70 \text{ to } \leq -60) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-50 \text{ to } \leq -40) \text{ dB}$ $(-40 \text{ to } \leq -30) \text{ dB}$ $(-30 \text{ to } \leq -20) \text{ dB}$ $(-20 \text{ to } \leq -10) \text{ dB}$ $(-10 \text{ to } \leq 0) \text{ dB}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-90 \text{ to } \leq -60) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-40 \text{ to } \leq -30) \text{ dB}$ $(-30 \text{ to } \leq -20) \text{ dB}$ $(-10 \text{ to } \leq 0) \text{ dB}$ $(-10 \text{ to } \leq 0) \text{ dB}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-90 \text{ to } \leq -80) \text{ dB}$ $(-70 \text{ to } \leq -60) \text{ dB}$ $(-70 \text{ to } \leq -60) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-60 \text{ to } \leq -50) \text{ dB}$ $(-50 \text{ to } \leq -40) \text{ dB}$ $(-40 \text{ to } \leq -30) \text{ dB}$ $(-30 \text{ to } \leq -20) \text{ dB}$ $(-20 \text{ to } \leq -10) \text{ dB}$	0.36 dB 0.19 dB 0.17 dB 0.17 dB 0.16 dB 0.16 dB 0.16 dB 0.16 dB 0.16 dB 0.25 dB 0.21 dB 0.21 dB 0.21 dB 0.2 dB 0.2 dB 0.2 dB 0.2 dB 0.3 dB 0.36 dB 0.36 dB 0.36 dB 0.36 dB	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 30 of 38

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
S21/S12 Transmission Phase – Measure ¹	50 MHz to 2 GHz $(-90 \text{ to} \le -40) \text{ dB}$ $(-40 \text{ to} \le -30) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-20 \text{ to} \le -10) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$ (2 to 8) GHz $(-80 \text{ to} \le -40) \text{ dB}$ $(-40 \text{ to} \le -30) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$ $(-40 \text{ to} \le -30) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-20 \text{ to} \le -10) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$ (20 to 40) GHz $(-80 \text{ to} \le -30) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-30 \text{ to} \le -20) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$ $(-10 \text{ to} \le 0) \text{ dB}$	180° 30° 9.2° 2.9° 1° 180° 35° 10° 3.3° 1.2° 180° 47° 13° 4.2° 1.5° 180° 24° 7.4° 2.6°	Comparison to HP 8722ES Network Analyzer, Agilent 85056A Calibration Kit

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Micrometers – Travel (Outside, Inside, Depth and Step) ^{1,2}	Up to 40 in	$(13 + 4.3L) \mu in$	Comparison to Gage Blocks
Anvil Flatness ¹	Up to 1 in Diameter	14 μin	Comparison to Optical Flats
Spindle Parallelism ¹	Up to 1 in Diameter	14 μin	Comparison to Optical Flats
Calipers ^{1,2} (Outside, Inside, Depth, Step)	Up to 40 in	$(51 + 3.5L) \mu in$	Comparison to Gage Blocks

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bore Gages ^{1,2}	Up to 1 in (1 to 6) in	$(43 + 8L) \mu in$ $(41 + 10L) \mu in$	Comparison to Characterized Cylindrical Rings
Single Axis Length – Outside ^{1,2}	Up to 1 in (1 to 4) in (4 to 15) in (15 to 20) in	$(15 + 6L) \mu in$ $(15 + 6L) \mu in$ $(12 + 6.5L) \mu in$ $(11 + 6.5L) \mu in$	Comparison to Universal Length Measuring Machine
Single Axis Length – Outside ^{1,2}	(20 to 40) in	$(84 + 3L) \mu in$	Comparison to Gage Amplifier/Check, Gage Blocks
Single Axis Length – Inside ^{1,2}	Up to 1 in (1 to 4) in (4 to 7) in (7 to 14) in	$(22 + 6L) \mu in$ $(20 + 7L) \mu in$ $(16 + 8L) \mu in$ $(15 + 8L) \mu in$	Comparison to Universal Length Measuring Machine
Height Gages 1,2	Up to 48 in	$(21 + 3.2L) \mu in$	Comparison to Gage Blocks, Grade AA Surface Plate
Cylindrical Ring Gages ² Inside Diameter	Up to 0.25 in (0.25 to 4) in (4 to 16) in	$(17 + 5.9L) \mu in$ $(17 + 5.9L) \mu in$ $(21 + 5.9L) \mu in$	Comparison to Universal Length Measuring Machine, Master Ring Gages
Thread Ring Gages ² Pitch Diameter	Up to 1 in (1 to 4) in (4 to 10) in	(81 + 7.2 <i>L</i>) μin (81 + 7.2 <i>L</i>) μin (81 + 7.2 <i>L</i>) μin	Tactile fit using Set Plugs
Cylindrical Plug Gages ² Outside Diameter	Up to 0.25 in (0.25 to 4) in (4 to 16) in	$(20 + 7.1L) \mu in$ $(20 + 7.1L) \mu in$ $(7.1L) \mu in$	Comparison to Universal Length Measuring Machine
Thread Plug Gages ² Major Diameter Pitch Diameter	Up to 1 in (1 to 4) in (4 to 10) in	(37 + 5.8 <i>L</i>) μin (37 + 5.8 <i>L</i>) μin (37 + 5.8 <i>L</i>) μin	Comparison to Universal Length
Filen Diameter	Up to 1 in (1 to 4) in (4 to 10) in	(37 + 3.8 <i>L</i>) μin (81 + 7.2 <i>L</i>) μin (81 + 7.2 <i>L</i>) μin (81 + 7.2 <i>L</i>) μin	Measuring Machine, Thread Wires

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Surface Plates ^{1,2}			In accordance with ASME B89.3.7 using
Overall Flatness	Up to 161 inDL	110 µin	Planekator
Local Area Flatness	Up to 0.001 in	38 μin	Repeat-O-Meter
Coating Thickness Gages (Eddy Current, Magnetic	Up to 3 000 μm	0.49 μm	Comparison to Universal Length
Induction, Surface Profile)	Up to 118 mils	0.019 mils	Measuring Machine, Shims
Indicators ^{1,2}	Up to 1 in	$(24 + 2.5L) \mu in$	Comparison to
(Dial, Digital, Test)	(1 to 4) in	$(23 + 3.5L) \mu in$	Gage Blocks,
(Diai, Digital, 10st)	(4 to 12) in	$(23 + 5L) \mu in$	Surface Plate

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Air/Nitrogen Flow Meters	Up to 100 slpm	-0.73 % of reading	Comparison to CME FCS Laminar Flow Elements
Liquid Flow Meters	Up to 250 gpm	0.33 % of reading	Comparison to FT-32 Turbine Flow System
Low Pressure Gages (Gauge)	(0 to 2) inH ₂ O	0.008 inH ₂ O	Comparison to Dwyer 1430 Microtector
Pneumatic Pressure Gages, Vacuum Gages ⁴ (Gauge)	(-14.7 to 10) psig (10 to 1 000) psig	0.002 1 psig 0.02% of reading + 0.002 3 psig	Comparison to DHI PPC4EX-7M Pressure Controller
Pneumatic Pressure Gages, Vacuum Gages ⁴ (Absolute)	Up to 10 psia (10 to 1 000) psia	0.007 6 psia 0.02% of reading + 0.003 psia	Comparison to DHI PPC4EX-7M Pressure Controller
Pneumatic Pressure Gages (Absolute or Gauge)	(0.2 to 718) psi	0.003 % of reading	Comparison to Ruska 2465 Gas Piston Gauge
Hydraulic Pressure Gages (Gauge)	(100 to 50 000) psig	0.008 % of reading	Comparison to DHI 5306 Liquid Piston Gauge

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 33 of 38

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
	(0 to 900) mmHg	0.29 mmHg	Comparison to Meriam DAI0900
Pressure/Vacuum Gages ¹ (Pneumatic and Hydraulic Gauge)	(15 to 30) psig (30 to 300) psig (300 to 500) psig (500 to 3 000) psig (3 000 to 10 000) psig	0.023 psi 0.16 psi 0.15 psi 1.8 psi 8.3 psi	Fluke 700PD5 Fluke 700P27 Meriam DGI0500-11-1 Meriam GGI3000-11-1 Fluke 700P31
Scales and Balances 1,5	Up to 500 mg (0.5 to 5) g (5 to 10) g (10 to 20) g (20 to 100) g (100 to 210) g	12 μg 40 μg 59 μg 89 μg 0.000 31 % of reading 0.000 41 % of reading	ASTM E617 Class 1 weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales and Balances ^{1,5}	100 g to 10 kg	0.000 59 % of reading	ASTM E617 Class 2 Weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales and Balances ^{1,5}	Up to 7 g (7 to 453) g 453 g to 2.2 kg (2.2 to 454) kg	0.12 % of reading 0.024 % of reading 0.019 % of reading 0.012 % of reading	NIST Class F Weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales and Balances ^{1,5}	Up to 30 lb (30 to 40) lb (40 to 70) lb (70 to 90) lb	0.012 % of reading 0.01 % of reading 0.009 % of reading 0.008 % of reading	ASTM E617 Class 6 Weights and internal calibration procedure utilized for the calibration of the weighing system.
Scales and Balances ^{1,5}	Up to 0.5 lb (0.5 to 1) lb (1 to 5) lb (5 to 1 000) lb	0.12 % of reading 0.024 % of reading 0.019 % of reading 0.012 % of reading	NIST Class F Weights and internal calibration procedure utilized for the calibration of the weighing system.
Force Measuring Equipment – Compression ¹	Up to 10 lbf (10 to 25) lbf (25 to 50) lbf (50 to 150) lbf (150 to 250) lbf (250 to 500) lbf	0.001 5 lbf 0.002 1 lbf 0.008 3 lbf 0.023 lbf 0.065 lbf 0.13 lbf	Comparison to NIST Class F Weights

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 34 of 38

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force Measuring Equipment – Compression ¹	(500 to 1 000) lbf	0.77 lbf	Comparison to Optima OP-312 Load Cell
Force Measuring Equipment – Compression ¹	(1 000 to 5 000) lbf	2.8 lbf	Comparison to Optima OP-312 Load Cell
Force Measuring Equipment – Compression ¹	(5 000 to 20 000) lbf	8.1 lbf	Comparison to Transcell BSS-20K Load Cell
Force Measuring Equipment – Tension ¹	Up to 10 lbf (10 to 25) lbf (25 to 50) lbf (50 to 150) lbf (150 to 250) lbf (250 to 500) lbf	0.001 5 lbf 0.002 1 lbf 0.008 3 lbf 0.023 lbf 0.065 lbf 0.13 lbf	Comparison to NIST Class F Weights
Force Measuring Equipment – Tension ¹	(500 to 1 000) lbf	0.77 lbf	Comparison to Optima OP-312 Load Cell
Force Measuring Equipment – Tension ¹	(1 000 to 5 000) lbf	2.8 lbf	Comparison to Optima OP-312 Load Cell
Force Measuring Equipment – Tension ¹	(5 000 to 10 000) lbf	4.2 lbf	Comparison to Transcell BSS-10K Load Cell
Force Measuring Equipment – Tension ¹	(10 000 to 20 000) lbf	8.1 lbf	Comparison to Transcell BSS-20K Load Cell
Force Measuring Equipment – Tension ¹	(20 000 to 50 000) lbf	23 lbf	Comparison to Optima OP-351 Load Cell
Force Measuring Equipment – Tension ¹	(50 000 to 100 000) lbf	44 lbf	Comparison to Rinstrum TLWS-100K Load Cell
Torque Indicating Devices	2 ozf·in to 2 000 lbf·ft	0.24 % of reading	Comparison to AKO TSD2050 Torque Master
Torque Transducers	20 ozf·in to 100 lbf·in 100 lbf·in to 125 lbf·ft (125 to 2 000) lbf·ft	0.05 % of reading 0.06 % of reading 0.08 % of reading	Comparison to Torque Arms, Master Weights

This Scope of Accreditation, version 012, was last updated on: 05 November 2025 and is valid only when accompanied by the Certificate.

Page 35 of 38

Photometry and Radiometry

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Illuminance – Lux Meters	(180 to 1 792) lux (1 792 to 17 000) lux	1.8 % of reading 1.7 % of reading	Comparison to FEL 1000W Lamp with Power Supply Unit

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Humidity – Source/Measure	(10 to 30) °C (10 to 90) %RH	1.3 %RH	Comparison to Vaisala HMI-41/HMP-46 Temp/Humidity Indicator/Probe
Temperature – Measure ¹	(-196 to 0) °C (0 to 100) °C (100 to 420) °C	0.062 °C 0.061 °C 0.061 °C	Direct measure using Digital Thermometer. SPRT Probe
Temperature – Measure ¹	(420 to 960) °C	0.091 °C	Direct measure using Digital Thermometer, Ceramic SPRT Probe
Temperature – Source ¹ (Temperature Measuring Devices)	(-30 to 0) °C (0 to 150) °C (150 to 420) °C	0.069 °C 0.084 °C 0.41 °C	Comparison to Digital Thermometer. SPRT Probe, Metrology Wells
Temperature – Source ¹ (Temperature Measuring Devices)	(420 to 960) °C	0.59 °C	Comparison to Digital Thermometer, Ceramic SPRT Probe, Metrology Wells
Infrared Measuring Devices ¹	(35 to 200) °C (200 to 350) °C (350 to 500) °C	0.95 °C 1.6 °C 2.1 °C	Comparison to Black Body Source (Flat Plate) $\mathcal{E} = 0.95$, $\lambda = (8 \text{ to } 14) \mu\text{m}$

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Reference ¹	10 MHz	38 μHz	Comparison to Fluke 910R GPS Rubidium Frequency Standard
Frequency – Source ¹	(1 to 70) Hz	58 nHz/Hz	Comparison to Agilent 33250A Function Generator, Fluke 910R GPS Frequency Standard
Frequency – Source ¹	70 Hz to 27 GHz	0.18 nHz/Hz + 3.9 μHz	Comparison to Fluke 96270A Reference Source, Fluke 910R GPS Frequency Standard
Frequency – Measure ¹	1 Hz to 10 kHz 10 kHz to 10 MHz (10 to 225) MHz 225 MHz to 1.1 GHz	1 nHz/Hz + 4.7 μHz 1 nHz/Hz + 0.31 mHz 1 nHz/Hz + 6.4 mHz 1.3 nHz/Hz	Comparison to Agilent 53131A Universal Counter, Fluke 910R GPS Frequency Standard
Frequency – Measure ¹	(1.1 to 26.5) GHz	0.18 nHz/Hz + 1.2 Hz	Comparison to HP 5343A Microwave Counter, Fluke 910R GPS Frequency Standard
Stopwatches, Timers	Up to 19.99 s/d	58 ms/d	Comparison to Helmut Klein TM-4500 Timometer
Optical Rotational Speed – Source ²		0.000 13 % of reading + 0.021 rpm	Comparison to Agilent 33250A Function Generator
Non-Contact Rate of Rotation ^{1,2}	Up to 600 rpm (600 to 100 000) rpm	0.000 13 % of reading + 1.2 rpm 0.006 9 % of reading + 2.1 rpm	Direct measure using Optical Tachometer

shington, DC 20036

Page 37 of 38

Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Duty Cycle – Source ¹			
Square Wave: < 3.3 Vp-p	(1 to 10) % Duty Cycle		
Freq: 10 mHz to 100 kHz	10 μs to 100 s	0.62 % of period + 78 ns	
	(10 to 49) % Duty Cycle	/ - /	
	10 μs to 100 s	0.039 % of period + 78 ns	Comparison to
	50 % Duty Cycle		Fluke 55xxA
	10 μs to 100 s	0.016 % of period + 78 ns	Multiproduct Calibrator
	(51 to 90) % Duty Cycle	7	-
	10 μs to 100 s	0.039 % of period + 78 ns	
	(91 to 99) % Duty Cycle		
	10 μs to 100 s	0.62 % of period + 78 ns	

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. t = time in seconds; L = length in inches; DL = diagonal length in inches; PL = rpm = revolutions per minute; PL = power factor.
- 3. CMC does not include the Mismatch value. It will be added in the Measurement Uncertainty reported on the Certificate of Calibration.
- 4. The span is user set on the unit. The minimum range for this unit is 10 psi.
- 5. The CMC for scales and balances is highly dependent upon the resolution of the unit under test. The CMC presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
- 6. The Measurement Uncertainty presented here is a unitless measurement.
- 7. For this parameter, 1 Digit will be added to the Measurement Uncertainty (MU) at the time of calibration.
- 8. The uncertainties shown are for the most favorable conditions. There is an increase in uncertainty that corresponds to the laboratory's AC voltage and current uncertainties at different frequencies other than the ones shown. Power factors (PF) other than the one shown contribute to the power uncertainty. PF is related to the cosine of phase. Therefore, uncertainties track the laboratory's phase uncertainty closely at PF near one but are magnified heavily as PF approaches zero. The lab may also report reactive power, apparent power, and power factor under this accreditation. If needed, contact laboratory for more information regarding uncertainties at frequency and power factor combinations other than the ones shown.
- 9. Unless otherwise specified in the far-right column, the laboratory is utilizing an in-house developed calibration procedure.
- 10. The legal entity for this laboratory is Transcat, Inc.

