

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Martin Calibration, Inc.
11965 12th Avenue South
Burnsville, MN 55337

Including satellite locations located in: Mundelein, IL and Eau Claire, WI

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the fields of

CALIBRATION and DIMENSIONAL MEASUREMENT

This certificate is valid only when accompanied by a current scope of accreditation document.

The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 06 July 2027

Certificate Number: ACT-1265

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

Martin Calibration, Inc.

11965 12th Avenue South
Burnsville, MN 55337

Corey Garbers
952-882-1528

CALIBRATION AND DIMENSIONAL MEASUREMENT

ISO/IEC 17025 Accreditation Granted: **06 July 2025**

Certificate Number: **ACT-1265** Certificate Expiry Date: **06 July 2027**

Satellite locations in:

Mundelein, IL

Eau Claire, WI

Services performed at Main Site laboratory

Martin Calibration, Inc.

11965 12th Avenue South
 Burnsville, MN 55337
 Corey Garbers
 952-882-1528

CALIBRATION

Acoustics and Vibration

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Sound Level			
Fixed Points	(94, 104, 114) dB	0.2 dB	
Linearity	(50 to 143) dB	0.13 dB	Comparison to Bruehl & Kjaer Sound Pressure Calibrator
Frequency	31 Hz to 16 kHz	1 % of reading	
Distortion	(25 to 123) dB 31 Hz to 16 kHz	0.14 dB	
Accelerometers	(5 to 9) Hz (10 to 99) Hz 100 Hz (101 to 920) Hz 921 Hz to 5 kHz (5 to 8) kHz (8 to 10) kHz (10 to 15) kHz	2.6 % of reading 1.6 % of reading 0.75 % of reading 1.3 % of reading 2.2 % of reading 3.8 % of reading 4.8 % of reading 8.6 % of reading	Comparison to PCB Shaker Table with PCB Reference Accelerometer

Chemical Quantities

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Conductivity Meters ¹	(0.86 to 10) μ S/cm (10 to 100) μ S/cm (100 to 1 500) μ S/cm 12 800 μ S/cm	0.42 μ S/cm 0.89 μ S/cm 0.42 % of reading 0.42 % of reading	Comparison to Conductivity Standards

Chemical Quantities
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Refractometers	0 Brix	0.0006 Brix	Comparison to Calibration Solutions
	10 Brix	0.018 Brix	
	40 Brix	0.019 Brix	
	70 Brix	0.03 Brix	
pH Meters ¹	4 pH	0.016 pH	Comparison to Buffer Solutions
	7 pH	0.016 pH	
	10 pH	0.016 pH	

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹ (Fixed Artifact)	10 V	0.5 μ V/V	Comparison to Fluke 732B Voltage Standards with Fluke Maps
DC Voltage – Source ¹	(0 to 220) mV (0.22 to 2.2) V (2.2 to 11) V (11 to 22) V (22 to 220) V (220 to 1 100) V	7.5 μ V/V + 0.4 μ V 5 μ V/V + 0.7 μ V 3.5 μ V/V + 2.5 μ V 3.5 μ V/V + 4 μ V 5 μ V/V + 40 μ V 6.5 μ V/V + 0.4 mV	Fluke 5730A Multiproduct Calibrator; Direct Measure
DC Voltage – Measure ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	20 nV 100 nV 22 μ V/V + 25 nV 5.3 μ V/V 0.5 μ V/V 0.31 μ V/V 0.35 μ V/V 1 μ V/V	Comparison to Nano Voltmeter Fluke 732B Voltage Standard with MI Potentiometer/Divider
DC High Voltage – Measure ¹	(1.1 to 10) kV (10 to 30) kV (30 to 50) kV (50 to 70) kV (70 to 100) kV	0.05 % of reading 0.055 % of reading 0.079 % of reading 0.12 % of reading 0.83 % of reading	Comparison to Hipotronics KVM100-A High Voltage Meter
DC Current – Source & Measure ¹	0 A (0 to 200) pA (0.2 to 20) nA (20 to 100) nA	76 fA 1.9 % of reading + 10 fA 0.29 % of reading + 1 pA 8 μ A/A + 1.3 pA	Comparison to Electrometer

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source & Measure ¹	(0.1 to 1) μ A (1 to 10) μ A (10 to 100) μ A (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	30 μ A/A 6.8 μ A/A 6.2 μ A/A 4.1 μ A/A 4.2 μ A/A 3.9 μ A/A 17 μ A/A	Comparison to Standard Resistors and DMM, Multifunction Calibrator
DC Current – Measure ¹	(1 to 20) A (20 to 120) A	26 μ A/A 80 μ A/A + 4 mA	Comparison to Fluke 52120A Amplifier with Current Shunts
DC Current – Source ¹	(0.2 to 220) μ A (0.22 to 2.2) mA (2.2 to 22) mA (22 to 220) mA (0.22 to 2.2) A	40 μ A/A + 6 nA 35 μ A/A + 7 nA 35 μ A/A + 40 nA 45 μ A/A + 0.7 μ A 80 μ A/A + 12 μ A	Fluke 5730A Multiproduct Calibrator; Direct Measure
DC Current – Source ¹	Up to 2 A (2.2 to 11) A (2 to 20) A	0.036 % of reading + 0.48 mA 0.012 % of reading + 0.16 mA 0.012 % of reading + 1.6 mA	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure
DC Current – Source ¹	(20 to 120) A	0.012 % of reading + 9.6 mA	Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier; Direct Measure
DC Current – Source ¹	(100 to 150) A (150 to 1 025) A	5 mA/A + 20 mA 5.1 mA/A + 0.9 A	Comparison to Fluke 5520A Multi Product Calibrator with 50-turn Coil
DC Power – Source	10.9 μ W to 10.9 mW 10.9 mW to 3.06 kW (3.06 to 20.9) kW	0.18 mW/W 0.17 mW/W 0.54 mW/W	Comparison to Fluke 5520A Multi Product Calibrator
AC Power – Source (45 to 65) Hz	109 μ W to 1.09 mW (1.09 to 297) μ W 297 μ W to 2.97 mW 2.97 mW to 337 W 337 W to 2.24 kW (2.24 to 20.9) kW	1.1 mW/W 930 μ W/W 780 μ W/W 620 μ W/W 700 μ W/W 780 μ W/W	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) mV (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz	0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 5 μ V 0.11 % of reading + 10 μ V 0.14 % of reading + 20 μ V 0.27 % of reading + 20 μ V 0.024 % of reading + 4 μ V 0.009 % of reading + 4 μ V 0.008 % of reading + 4 μ V 0.02 % of reading + 4 μ V 0.05 % of reading + 5 μ V 0.11 % of reading + 10 μ V 0.14 % of reading + 20 μ V 0.27 % of reading + 20 μ V 0.024 % of reading + 12 μ V 0.009 % of reading + 7 μ V 0.005 7 % of reading + 7 μ V 0.012 % of reading + 7 μ V 0.031 % of reading + 17 μ V 0.066 % of reading + 20 μ V 0.14 % of reading + 25 μ V 0.27 % of reading + 45 μ V	Fluke 5730A Multiproduct Calibrator; Direct Measure

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source ¹	(0.22 to 2.2) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (2.2 to 22) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (22 to 220) V (10 to 20) Hz (20 to 40) Hz 40 Hz to 20 kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz 500 kHz to 1 MHz (220 to 250) V (15 to 50) Hz (250 to 1 100) V 50 Hz to 1 kHz	0.024 % of reading + 40 μ V 0.009 % of reading + 15 μ V 0.004 2 % of reading + 8 μ V 0.006 7 % of reading + 10 μ V 0.008 5 % of reading + 30 μ V 0.034 % of reading + 80 μ V 0.1 % of reading + 0.2 mV 0.17 % of reading + 0.3 mV 0.024 % of reading + 0.4 mV 0.009 % of reading + 0.15 mV 0.004 2 % of reading + 50 μ V 0.006 7 % of reading + 0.1 mV 0.008 3 % of reading + 0.2 mV 0.034 % of reading + 0.6 mV 0.1 % of reading + 2 mV 0.17 % of reading + 3.2 mV 0.024 % of reading + 4 mV 0.009 % of reading + 1.5 mV 0.005 2 % of reading + 0.6 mV 0.008 % of reading + 1 mV 0.015 % of reading + 2.5 mV 0.09 % of reading + 16 mV 0.44 % of reading + 40 mV 0.8 % of reading + 80 mV 0.03 % of reading + 16 mV 0.007 % of reading + 3.5 mV	Fluke 5730A Multiproduct Calibrator; Direct Measure
AC Voltage – Source ¹	(220 to 750) V (30 to 50) kHz (50 to 100) kHz (220 to 1 100) V 40 Hz to 1 kHz (1 to 20) kHz (20 to 30) kHz	0.06 % of reading + 11 mV 0.06 % of reading + 11 mV 0.009 % of reading + 4 mV 0.017 % of reading + 6 mV 0.23 % of reading + 45 mV	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (2.2 to 7) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (7 to 22) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (22 to 70) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	1.1 mV/V + 1.3 μ V 490 μ V/V + 1.3 μ V 280 μ V/V + 1.3 μ V 540 μ V/V + 2 μ V 800 μ V/V + 2.5 μ V 1.5 mV/V + 4 μ V 1.6 mV/V + 8 μ V 2.3 mV/V + 8 μ V 570 μ V/V + 1.3 μ V 250 μ V/V + 1.3 μ V 140 μ V/V + 1.3 μ V 270 μ V/V + 2 μ V 400 μ V/V + 2.5 μ V 800 μ V/V + 4 μ V 870 μ V/V + 8 μ V 1.5 mV/V + 8 μ V 190 μ V/V + 1.3 μ V 130 μ V/V + 1.3 μ V 73 μ V/V + 1.3 μ V 140 μ V/V + 2 μ V 210 μ V/V + 2.5 μ V 540 μ V/V + 4 μ V 590 μ V/V + 8 μ V 1.1 mV/V + 8 μ V 160 μ V/V + 1.5 μ V 80 μ V/V + 1.5 μ V 43 μ V/V + 1.5 μ V 87 μ V/V + 2 μ V 170 μ V/V + 2.5 μ V 340 μ V/V + 4 μ V 450 μ V/V + 8 μ V 730 μ V/V + 8 μ V	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure ¹	<p>(70 to 220) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (220 to 700) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (0.7 to 2.2) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (2.2 to 7) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz </p>	<p>140 μV/V + 1.5 μV 57 μV/V + 1.5 μV 25 μV/V + 1.5 μV 46 μV/V + 2 μV 110 μV/V + 2.5 μV 170 μV/V + 4 μV 250 μV/V + 8 μV 670 μV/V + 8 μV 140 μV/V + 1.5 μV 51 μV/V + 1.5 μV 22 μV/V + 1.5 μV 34 μV/V + 2 μV 53 μV/V + 2.5 μV 120 μV/V + 4 μV 200 μV/V + 8 μV 640 μV/V + 8 μV 130 μV/V 44 μV/V 16 μV/V 31 μV/V 47 μV/V 110 μV/V 170 μV/V 600 μV/V 130 μV/V 45 μV/V 16 μV/V 32 μV/V 54 μV/V 130 μV/V 270 μV/V 800 μV/V </p>	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure ¹	(7 to 22) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (22 to 70) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (70 to 220) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (220 to 700) V (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz	130 μ V/V 45 μ V/V 18 μ V/V 32 μ V/V 54 μ V/V 130 μ V/V 270 μ V/V 800 μ V/V 130 μ V/V 45 μ V/V 21 μ V/V 38 μ V/V 63 μ V/V 130 μ V/V 270 μ V/V 800 μ V/V 130 μ V/V 45 μ V/V 21 μ V/V 46 μ V/V 65 μ V/V 140 μ V/V 330 μ V/V 130 μ V/V 66 μ V/V 27 μ V/V 87 μ V/V 330 μ V/V	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	Up to 2.2 mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (2.2 to 7) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (7 to 22) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz	0.1 % of reading + 1.3 μ V 0.05 % of reading + 1.3 μ V 0.05 % of reading + 1.3 μ V 0.05 % of reading + 2 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.17 % of reading + 1 μ V 0.32 % of reading + 1 μ V 0.7 % of reading + 2 μ V 0.1 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.07 % of reading + 1 μ V 0.1 % of reading + 1 μ V 0.17 % of reading + 1 μ V 0.37 % of reading + 1 μ V 0.1 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.07 % of reading 0.07 % of reading 0.07 % of reading 0.1 % of reading 0.17 % of reading 0.37 % of reading	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator (Wideband)

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	(22 to 70) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (70 to 220) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (220 to 700) mV (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz	0.1 % of reading 0.05 % of reading % 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading 0.1 % of reading 0.04 % of reading 0.04 % of reading 0.04 % of reading 0.04 % of reading 0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading 0.1 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator (Wideband)

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source & Measure Flatness relative to 1 kHz	(0.7 to 2.2) V (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz (2.2 to 7) V (10 to 30) Hz (30 to 120) Hz (0.12 to 1.2) kHz (1.2 to 120) kHz (120 to 500) kHz (0.5 to 1.2) MHz (1.2 to 2) MHz (2 to 10) MHz (10 to 20) MHz (20 to 30) MHz	0.1 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading 0.1 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.03 % of reading 0.05 % of reading 0.05 % of reading 0.1 % of reading 0.15 % of reading 0.35 % of reading	Comparison to Fluke 5790A AC Standard with Fluke 5720A Multi Product Calibrator (Wideband)
AC Current – Source ¹	Up to 220 μ A (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	0.025 % of reading + 16 nA 0.016 % of reading + 10 nA 0.011 % of reading + 8 nA 0.028 % of reading + 12 nA 0.11 % of reading + 65 nA 0.25 % of reading + 40 nA 0.016 % of reading + 35 nA 0.011 % of reading + 35 nA 0.02 % of reading + 0.11 μ A 0.11 % of reading + 0.65 μ A 0.025 % of reading + 0.4 μ A 0.016 % of reading + 0.35 μ A 0.011 % of reading + 0.35 μ A 0.020 % of reading + 0.55 μ A 0.11 % of reading + 5 μ A	Fluke 5730A Multiproduct Calibrator; Direct Measure

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(2.2 to 22) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (22 to 220) mA (10 to 20) Hz (20 to 40) Hz 40 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (0.22 to 2.2) A 20 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (2.2 to 11) A (40 to 100) Hz (1 to 5) kHz (5 to 10) kHz	0.025 % of reading + 0.4 µA 0.016 % of reading + 0.35 µA 0.011 % of reading + 0.35 µA 0.02 % of reading + 0.55 µA 0.11 % of reading + 5 µA 0.025 % of reading + 4 µA 0.016 % of reading + 3.5 µA 0.011 % of reading + 2.5 µA 0.02 % of reading + 3.5 µA 0.11 % of reading + 10 µA 0.025 % of reading + 35 µA 0.045 % of reading + 80 µA 0.7 % of reading + 0.16 µA 0.046 % of reading + 0.17 mA 0.095 % of reading + 0.38 mA 0.36 % of reading + 0.75 mA	Fluke 5730A Multiproduct Calibrator, Fluke 5725A Amplifier; Direct Measure
AC Current – Source ¹	Up to 2 A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz (2 to 20) A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz (20 to 120) A (10 to 850) Hz 850 Hz to 6 kHz (6 to 10) kHz	0.009 % of reading + 40 µA 0.04 % of reading + 80 µA 1.6 % of reading + 62 mA 0.009 % of reading + 0.4 mA 0.04 % of reading + 0.8 mA 2.3 % of reading + 94 mA 0.009 % of reading + 2.4 mA 0.04 % of reading + 4.8 mA 3.1 % of reading + 0.7 A	Fluke 5730A Multiproduct Calibrator, Fluke 52120A Current Amplifier; Direct Measure
AC Current – Source ¹	9 µA to 1 mA DC to 10 kHz 1 mA to 1 A DC to 10 kHz (1 to 20) A DC to 10 kHz	75 µA/A 28 µA/A 52 µA/A	Comparison to Fluke 5720A Multi Product Calibrator with Fluke A40B Current Shunts

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source ¹	(20 to 120) A DC to 1 kHz (1 to 6) kHz	3 mA/A 12 mA/A	Comparison to Fluke 5720A Multi Product Calibrator with Fluke A40B Current Shunts
AC Current – Measure ¹	9 μ A to 1 mA (DC to 30) kHz (30 to 100) kHz 1mA to 1A (DC to 100) kHz (1 to 20) A (DC to 10) kHz (10 to 30) kHz (30 to 100) kHz	90 μ A/A 0.18 mA/A 35 μ A/A 61 μ A/A 83 μ A/A 0.13 mA/A	Comparison to Fluke A40B Current Shunts
AC Current – Measure ¹	9 μ A to 200 μ A (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz 200 μ A to 2 mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (2 to 20) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (20 to 200) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz	0.62 mA/A 0.54 mA/A 0.94 mA/A 8.4 mA/A 0.6 mA/A 0.54 mA/A 0.94 mA/A 4.2 mA/A 0.6 mA/A 0.54 mA/A 0.94 mA/A 4.2 mA/A 0.57 mA/A 0.49 mA/A 0.83 mA/A	Comparison to Fluke 8508A 8.5 Digit Multimeter

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure	(0.2 to 2) A 1 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz (2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz (20 to 30) A 10 Hz to 2 kHz (2 to 10) kHz	0.3 mA/A + 0.1 mA 0.56 mA/A + 0.1 mA 0.8 mA/A + 0.1 mA 0.84 mA/A + 0.5 mA 0.86 mA/A + 0.5 mA 0.84 mA/A + 12 mA 1.2 mA/A + 12 mA	Fluke 8588A 8.5 Digit Multimeter; Direct Measure
Resistance – Source ¹ (Fixed Artifacts)	0.001 Ω 0.01 Ω 0.1 Ω 1 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ 1 GΩ (1 to 10) GΩ (10 to 100) GΩ (100 to 900) GΩ 1 TΩ 10 TΩ	3.5 μΩ/Ω 4.3 μΩ/Ω 1.5 μΩ/Ω 0.67 μΩ/Ω 0.56 μΩ/Ω 0.68 μΩ/Ω 0.51 μΩ/Ω 0.8 μΩ/Ω 0.57 μΩ/Ω 1.3 μΩ/Ω 14 μΩ/Ω 130 μΩ/Ω 26 μΩ/Ω 0.16 % of reading 0.54 % of reading 0.56 % of reading 1.6 % of reading 1.7 % of reading	Comparison to Standard Resistors
Resistance – Measure ¹	(10 to 100) μΩ (0.1 to 1) mΩ (1 to 10) mΩ (10 to 100) mΩ (0.1 to 1) Ω (1 to 10) Ω (10 to 100) Ω (0.1 to 1) kΩ (1 to 10) kΩ (10 to 100) kΩ (0.1 to 1) MΩ (1 to 10) MΩ	0.15 % of reading 15 μΩ/Ω 5.1 μΩ/Ω 1.8 μΩ/Ω 0.67 μΩ/Ω 0.56 μΩ/Ω 0.68 μΩ/Ω 0.51 μΩ/Ω 0.8 μΩ/Ω 0.57 μΩ/Ω 1.3 μΩ/Ω 14 μΩ/Ω	Comparison to Standard Resistors with Bridge and DMM

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Measure ¹	(10 to 200) MΩ (0.2 to 2) GΩ (2 to 20) GΩ	72 µΩ/Ω + 1 kΩ 0.18 mΩ/Ω + 100 kΩ 0.67 mΩ/Ω + 10 MΩ	Comparison to Decade Resistors with Bridge and DMM
Resistance – Measure ¹ High Voltage Mode up to 200 V	(2 to 20) MΩ (20 to 200) MΩ 200 MΩ to 2 GΩ (2 to 20) GΩ	15 µΩ/Ω + 10 Ω 60 µΩ/Ω + 1 kΩ 0.15 mΩ/Ω + 100 kΩ 0.53 mΩ/Ω + 10 MΩ	Comparison to Decade Resistors with Bridge and DMM
AC Resistance (Impedance)	(1, 500) kHz, 1 MHz 25 Ω 375 Ω (1, 250, 500) kHz, 1 MHz 6 kΩ (1, 25, 50) kHz 100 kΩ	100 µΩ/Ω 100 µΩ/Ω 100 µΩ/Ω 100 µΩ/Ω	Comparison to AC Resistor Set
Capacitance – Measure ¹	1 kHz 1 pF 10 pF 100 pF 1 nF 1 µF	1.9 mF/F 1.1 mF/F 1.2 mF/F 1.2 mF/F 1.2 mF/F	Comparison to QuadTech 1730 LCR Meter
Capacitance – Source ¹ (Fixed Artifacts)	100 Hz, 1 kHz 1 pF 1 nF 10 nF 100 nF 1 µF	1.8 mF/F 0.23 mF/F 0.25 mF/F 0.21 mF/F 0.25 mF/F	Comparison to Standard Capacitors
Capacitance – Source ¹ 10 Hz to 10 kHz 10 Hz to 3 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz (10 to 600) Hz 10 Hz to 300 Hz 10 Hz to 150 Hz 10 Hz to 120 Hz	0.19 nF to 1.1 nF (1.1 to 3.3) nF (3.3 to 11) nF (11 to 110) nF (110 to 330) nF 330 nF to 1.1 µF (1.1 to 3.3) µF (3.3 to 11) µF (11 to 33) µF	15 mF/F 8.4 mF/F 3.6 mF/F 3.6 mF/F 3.7 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 5.1 mF/F	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment	
Capacitance – Source ¹	10 Hz to 80 Hz (0 to 50) Hz (0 to 20) Hz (0 to 6) Hz (0 to 2) Hz (0 to 0.6) Hz (0 to 0.2) Hz	(33 to 110) μ F (110 to 330) μ F 330 μ F to 1.1 mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	5.6 mF/F 5.6 mF/F 8.7 mF/F 5.5 mF/F 5.5 mF/F 8.5 mF/F 12 mF/F	Comparison to Fluke 5520A Multi Product Calibrator
Inductance – Measure ¹	100 μ H @ 1 kHz 1 mH @ 1 kHz 10 mH @ 1 kHz 100 mH @ 1 kHz 1 H @ 1 kHz	1.3 mH/H	Comparison to QuadTech 1730 LCR Meter	
Inductance – Source ¹ (Fixed Artifacts)	100 Hz 1 kHz	500 μ H 2 mH 20 mH 1 H 10 H 500 μ H 2 mH 20 mH 1 H 10 H	1.2 mH/H 1.1 mH/H 1.1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H	Comparison to Standard Inductors
Oscilloscopes ¹				
Square Wave Signal 50 Ω at 1 kHz	40 μ V to 5 V	1 mV/V		
Square Wave Signal 1 M Ω at 1 kHz	40 μ V to 5 V	1 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator	
DC Voltage, 50 Ω DC Voltage, 1 M Ω	1 mV to 5 V 1 mV to 200 V	0.26 mV/V 0.25 mV/V		
Leveled Sine Wave Amplitude	5 mV to 5 V	15 mV/V		

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Oscilloscopes ¹			
Leveled Sine Wave Flatness (relative to 50 kHz)	4.4 mVp-p to 3 Vp-p 0.1 Hz to 300 MHz (300 to 550) MHz	43 mV/V 43 mV/V	
Time Marker (50 Ω load) Source and Period	4.4 mVp-p to 3.3 Vp-p 550 MHz to 1.1 GHz (1.1 to 3.2) GHz	52 mV/V 52 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator
Rise/Fall Time – Source	9 ns to 55 s	0.25 μs/s	
Pulse Width – Source	150 ps	27 ps	
	(1 to 100) ns	52 ms/s	
Electrical Simulation of Thermocouple Indicators ¹	Type B (250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C Type C (0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C Type E (-270 to -245) °C (-245 to -195) °C (-195 to -155) °C (-155 to -90) °C (-90 to 15) °C (15 to 890) °C (890 to 1 000) °C	1.1 °C 0.85 °C 0.67 °C 0.52 °C 0.43 °C 0.33 °C 0.23 °C 0.18 °C 0.21 °C 0.24 °C 0.27 °C 0.33 °C 0.37 °C 1.38 °C 0.21 °C 0.12 °C 0.09 °C 0.08 °C 0.07 °C 0.08 °C	Comparison to Ectron 1140A Thermocouple Simulator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type J (-210 to -180) °C (-180 to -120) °C (-120 to -50) °C (-50 to 990) °C (990 to 1 200) °C Type K (-270 to -255) °C (-255 to -195) °C (-195 to -115) °C (-115 to -55) °C (-55 to 1 000) °C (1 000 to 1 372) °C Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type R (-50 to -30) °C (-30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (-30 to -45) °C (-45 to -105) °C (-105 to 310) °C (310 to 615) °C (615 to 1 768) °C	0.14 °C 0.12 °C 0.09 °C 0.08 °C 0.08 °C 2.5 °C 0.81 °C 0.14 °C 0.1 °C 0.08 °C 0.09 °C 5.8 °C 1.2 °C 0.27 °C 0.17 °C 0.14 °C 0.12 °C 0.1 °C 0.75 °C 0.63 °C 0.46 °C 0.35 °C 0.3 °C 0.25 °C 0.71 °C 0.64 °C 0.46 °C 0.38 °C 0.33 °C 0.3 °C	Comparison to Ectron 1140A Thermocouple Simulator

Electrical – DC/Low Frequency

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type T (-270 to -255) °C (-255 to -240) °C (-240 to -210) °C (-210 to -150) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C	2.1 °C 0.56 °C 0.35 °C 0.21 °C 0.14 °C 0.09 °C 0.08 °C	Comparison to Ectron 1140A Thermocouple Simulator
Electrical Simulation of RTD Indicators ¹	PT 395 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C PT 3926 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C PT 3916 100 Ω (-200 to -190) °C (-190 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C PT 385 200 Ω (-200 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.06 °C 0.08 °C 0.11 °C 0.12 °C 0.14 °C 0.27 °C 0.06 °C 0.08 °C 0.11 °C 0.12 °C 0.14 °C 0.29 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.09 °C 0.11 °C 0.12 °C 0.27 °C 0.05 °C 0.06 °C 0.14 °C 0.15 °C 0.16 °C 0.19 °C	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 385 500 Ω (-200 to -80) °C (-80 to 100) °C (100 to 260) °C (260 to 400) °C (400 to 600) °C (600 to 630) °C PT 395 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C PT 3926 100 Ω (-200 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C PT 3916 100 Ω (-200 to -190) °C (-190 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C PT 385 200 Ω (-200 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.05 °C 0.06 °C 0.07 °C 0.09 °C 0.01 °C 0.13 °C 0.06 °C 0.08 °C 0.11 °C 0.12 °C 0.14 °C 0.27 °C 0.06 °C 0.08 °C 0.11 °C 0.12 °C 0.14 °C 0.29 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.09 °C 0.11 °C 0.12 °C 0.27 °C 0.05 °C 0.06 °C 0.14 °C 0.15 °C 0.16 °C 0.19 °C	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – DC/Low Frequency
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 385 500 Ω (-200 to -80) °C (-80 to 100) °C (100 to 260) °C (260 to 400) °C (400 to 600) °C (600 to 630) °C PT 385 1 000 Ω (-200 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 600) °C (600 to 630) °C PtNi 120 Ω (-80 to 100) °C (100 to 260) °C Cu 427 10 Ω (-100 to 260) °C	0.05 °C 0.06 °C 0.07 °C 0.09 °C 0.01 °C 0.13 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.27 °C 0.09 °C 0.16 °C 0.35 °C	Comparison to Fluke 5520A Multi Product Calibrator

Electrical – RF/Microwave
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
RF Power – Measure Absolute Level ¹	(-36 to 20) dBm 9 kHz to 6 GHz (20 to 30) dBm (6 to 18) GHz (18 to 26.5) GHz	0.16 dB 0.44 dB 0.5 dB	Comparison to Agilent E9304A/N1912A Agilent N5531S Measuring Receiver with N5532A Sensor Module
RF Power – Measure Absolute Level ¹	(-20 to 20) dBm 100 kHz to 30 MHz 30 MHz to 2 GHz (1 to 18) GHz (18 to 26.5) GHz	0.2 dB 0.21 dB 0.31 dB 0.4 dB	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Module
RF Power – Measure Absolute Level ¹	(-30 to 20) dBm 100 kHz to 30 MHz	3.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with 8482A Sensor

Electrical – RF/Microwave
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Relative Power – Measure ¹ 100 kHz to 26.5 GHz	(-10 to 0) dB (-20 to -10) dB (-30 to -20) dB (-40 to -30) dB (-50 to -40) dB (-60 to -50) dB (-70 to -60) dB (-80 to -70) dB	0.02 dB 0.03 dB 0.03 dB 0.05 dB 0.06 dB 0.06 dB 0.07 dB 0.07 dB	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Module
Relative Power – Measure ¹ 100 kHz to 26.5 GHz	(-90 to -80) dB (-100 to -90) dB (-110 to -100) dB (-120 to -110) dB (-130 to -120) dB (-140 to -130) dB	0.08 dB 0.08 dB 0.09 dB 0.1 dB 0.1 dB 0.1 dB	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Module
RF Power – Source ¹	(-90 to -75) dBm 250 kHz to 2 GHz (2 to 20) GHz (20 to 32) GHz (-75 to -10) dBm 250 kHz to 2 GHz (2 to 20) GHz (20 to 32) GHz (-20 to -10) dBm 250 kHz to 2 GHz (2 to 20) GHz (20 to 32) GHz	0.73 dB 1 dB 1.2 dB 0.72 dB 1 dB 1.2 dB 1.4 dB 1.3 dB 1.3 dB	Comparison to Agilent N5183A Signal Generator
RF Power – Source ¹	(-10 to 10) dBm 250 kHz to 2 GHz (2 to 20) GHz (20 to 32) GHz > 10 dBm 250 kHz to 2 GHz (2 to 20) GHz (20 to 32) GHz	0.61 dB 0.91 dB 0.93 dB 0.63 dB 0.92 dB 1 dB	Comparison to Agilent N5183A Signal Generator
Phase Modulation – Source ¹ 100 kHz to 32 GHz	Rate: DC to 1 MHz DC to 4 MHz	0.59 % of reading + 0.01 rad	Comparison to Agilent N5183A Signal Generator

Electrical – RF/Microwave
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
LO Phase Noise @ 1GHz	(-50 to 20) dB Frequency offset: (0.10 to 1 000) Hz (1 to 9 900) kHz	0.48 dB 0.64 dB	Comparison to Keysight E4440A Spectrum Analyzer
Amplitude Modulation ¹ - Source 100 kHz to 32 GHz	Rate: DC to 10 kHz Depths: (1 to 90) %	4.1 % of reading	Comparison to Agilent N5183A Signal Generator
Amplitude Modulation – Measure ¹ 100 kHz to 10 MHz 10 MHz to 3 GHz 10 MHz to 3 GHz (3 to 26.5) GHz (3 to 26.5) GHz	Rate: 20 Hz to 10 kHz Depths: (5 to 99) % Rate: 50 Hz to 100 kHz Depths: (20 to 99) % Rate: 50 Hz to 100 kHz Depths: (5 to 20) % Rate: 50 Hz to 100 kHz Depths: (20 to 99) % Rate: 50 Hz to 100 kHz Depths: (5 to 20) %	0.83 % of reading 0.59 % of reading 2.6 % of reading 1.6 % of reading 4.7 % of reading	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Modules
Pulse Generation – Source ¹ Repetition Frequency: 0.1 Hz to 10 MHz	30 ns to 42 s	10 ns	Comparison to Agilent N5183A Signal Generator
Frequency Modulation – Source ¹ 100 kHz to 32 GHz	1 dB Rate: DC to 3 MHz 3 dB Rate: DC to 7 MHz	2 % of setting + 20 Hz	Comparison to Agilent N5183A Signal Generator

Electrical – RF/Microwave
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Phase Modulation-Measure ¹ 100 kHz to 6.6 GHz	Rate: 200 Hz 20 kHz Dev.: > 0.7 rad	1.1 % of reading	
100 kHz to 6.6 GHz	Rate: 200 Hz, 20 kHz Dev.: > 0.3 rad	3.1 % of reading	
(6.6 to 13.2) GHz	Rate: 200 Hz 20 kHz Dev.: > 2.0 rad	1.1 % of reading	
(6.6 to 13.2) GHz	Rate: 200 Hz 20 kHz Dev.: > 0.6 rad	3.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Modules
(13.2 to 26.5) GHz	Rate: 200 Hz 20 kHz Dev.: > 2.0 rad	1.1 % of reading	
(13.2 to 26.5) GHz	Rate: 200 Hz 20 kHz Dev.: > 0.6 rad	3.1 % of reading	
Freq Modulation – Measure ¹ Freq. Dev. Mod Rate Ratio > 0.2	Rate: 20 Hz to 10 kHz Dev.: 200 Hz to 40 kHz peak	1.6 % of reading	
250 kHz to 10 MHz	Freq. Dev. Mod Rate Ratio > 0.2	1.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Modules
250 kHz to 10 MHz	Rate: 20 Hz to 10 kHz Dev.: 200 Hz to 40 kHz peak	1.6 % of reading	
10 MHz to 6.6 GHz	Freq. Dev. Mod Rate Ratio > 1.2	1.1 % of reading	
10 MHz to 6.6 GHz	Rate: 50 Hz to 200 kHz Dev.: 250 Hz to 400 kHz peak	1.6 % of reading	
10 MHz to 6.6 GHz	Freq. Dev. Mod Rate Ratio > 0.2	1.1 % of reading	

Electrical – RF/Microwave
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Freq Modulation – Measure ¹			
Freq. Dev. Mod Rate Ratio > 0.2 10 MHz to 6.6 GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio > 0.45	1.1 % of reading	
(6.6 to 13.2) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio > 0.2	2.6 % of reading	
(6.6 to 13.2) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio > 8	1.1 % of reading	Comparison to Agilent N5531S Measuring Receiver with N5532A Sensor Modules
(13.2 to 26.5) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak Freq. Dev. Mod Rate Ratio > 0.2	3.9 % of reading	
(13.2 to 26.5) GHz	Rate: 50 Hz to 200kHz Dev.: 250 Hz to 400 kHz peak	1.1 % of reading	

Length – Dimensional Metrology
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Angle Measuring Equipment ²	(0.25 to 365)°	2.4"	Comparison to Gage Blocks, Gage Amplifier, Sine Bar
Angle Plates – Squareness ²	Up to 18 in	0.000 32° (5.6 µin/in)	Comparison to Gage Amplifier with probe, Master Square(s)
Gage Blocks ²	(0.01 to 1) in (2 to 3) in 4 in	(1.1 + 0.4L) µin (1.2 + 0.7L) µin 4.6 µin	Comparison to Master Gage Blocks, Gage Block Comparator

Length – Dimensional Metrology

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks ²	(5 to 20) in	(0.96 + 1.2L) μ in	Comparison to Horizontal Measuring Machine
Gage Blocks ²	100 mm (125 to 500) mm	0.17 μ m (0.06 + 0.000 6L) μ m	Comparison to Primary Master Gage Blocks
Indicators ^{1,2}	(0.000 1 to 6) in	(5 + 8L) μ in	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5 + 8L) μ in (410 + 2L) μ in	Comparison to Gage Blocks
Outside Micrometers ^{1,2} Linearity	Up to 12 in (12 to 24) in	(5 + 8L) μ in (34 + 4.6L) μ in	Comparison to Gage Blocks
Anvil Flatness	Up to 1 in D (0 to 84) μ in	4 μ in	Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(43 + 1.7L) μ in (7 + 3L) μ in	Comparison to Gage Blocks
Grind Gages	Up to 100 mm	0.35 mm	Comparison to Digital Indicator
Coating Thickness Gages ^{1,2}	Up to 0.02 in	58 μ in + 0.6R	Comparison to Coating Thickness Standards
Coating Thickness Gage Standards	Up to 0.10 in	21 μ in	Comparison to Horizontal Measuring Machine
External Diameter ^{1,2}	(0.000 1 to 1) in (1 to 12) in	(3 + 1L) μ in (3 + 3L) μ in	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	(3 + 3L) μ in	Comparison to Horizontal Measuring Machine
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(81 + 2.3L) μ in	Comparison to Horizontal Measuring Machine
Major Diameter	Pitch 90 – 4 TPI Up to 4 in	(3.5 + 4.6L) μ in	Thread Measuring Wires

Length – Dimensional Metrology
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Optical Comparators ^{1,2} Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11L) μ in (30 + 7.5L) μ in	Comparison to Glass Scale
Magnification	(5 to 100) X	350 μ in	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 54 inDL (54 to 238) inDL	(17 + 0.7DL) μ in (1 + 1.4DL) μ in	Comparison to Laser System
Local Area Flatness	Up to 238 inDL	34 μ in	Repeat-O-Meter
Roundness/Cylindricity Artifacts	Up to 150 mm	0.02 μ m	Comparison to Rondcom41c
Surface Finish Artifacts	Up to 118 μ in 118.1 to 500 μ in	0.5 μ in + 1 % of nominal 0.6 μ in + 1.1 % of nominal	Comparison to Profilometer, Master Patch
Profilometers ¹	Up to 500 μ in	0.7 μ in + 1.1 % of nominal	Comparison to Master Patch
Optical Flats Parallelism	Up to 6 inD (0 to 80) μ in	2.7 μ in	Comparison to Gage Block Comparator, Master Flat
Flatness	Up to 6 inD (0 to 80) μ in	3.5 μ in	
CMMs ^{1,2} Linearity	Up to 144 in	(25 + 2.4L) μ in	Comparison to Laser Measuring System
Volumetric Repeatability	(6 to 24) in (0.5 to 2) in	66 μ in 45 μ in	Ball Bar, CMM Sphere
VMMs ^{1,2} X, Y Linearity	Up to 12 in	(32 + 4.1L) μ in	Comparison to Glass Scales
Graduated Scales ^{1,2} Glass, Steel, Tape	Up to 12 in (1 to 200) ft	(40 + 1L) μ in (10 + 3L) μ in	Comparison to Laser Measuring System
Horizontal Measuring Systems ^{1,2}	Up to 8 in (8 to 60) in	(6 + 1.7L) μ in (3 + 2.5L) μ in	Comparison to Gage Blocks

Length – Dimensional Metrology
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Bore Gages ^{2,7} 2-point	(0.24 to 9) in	(4.3 + 3L) μ in	Comparison to Horizontal Measuring Machine
	(0.24 to 9) in	(85 + 7L) μ in	Cylindrical Rings
Protractors	(0 to 90) $^{\circ}$	0.16 $^{\circ}$	Comparison to Sine Bar, Gage Blocks
Chamfer Gages ^{2,7}	(0.179 to 2.749) in	280 μ in	Comparison to Chamfer Rings
Cylindrical Squares ² Squareness	Up to 12 in	1.5"	Comparison to Gage Amplifier w/ probe, Master Square(s)
	-	0.02 μ m	Roundness Machine
Feeler/Thickness Gages ²	Up to 0.2 in	(4.3 + 3L) μ in	Comparison to Horizontal Measuring System
Gage Amplifier w/ Probe(s)	Up to 0.1 in	10 μ m	Comparison to Gage Blocks
Gage Balls/Spheres ² Diameter	Up to 6 in	(4.3 + 3D) μ in	Comparison to Gage Blocks, Horizontal Measuring System
	-	0.02 μ m	Roundness Machine
Indicator Calibrator ⁷ (Linearity)	Up to 6 in	60 μ m	Comparison to Horizontal Measuring System
Groove Micrometers ^{2,7}	Up to 12 in	(44 + 2.6L) μ in	Comparison to Gage Blocks
Machinist Levels ² Zero Check	Up to 24 in	350 μ m	Comparison to Master Level, Gage Blocks
	-	(100 + 0.83L) μ m	
Microscopes, Stereo Reticle Linearity	Up to 2 in	870 μ m	Comparison to Stage Micrometer
Toolmakers Microscope ^{2,7} Scale Linearity	Up to 4 in	(774 + 70L) μ m	Comparison to Stage Micrometer
Length Standards ²	(1 to 60) in	(3.4 + 3.5L) μ m	Comparison to Horizontal Measuring System

Length – Dimensional Metrology
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment	
Inside Micrometers ²	Up to 8 in (8 to 60) in	(6 + 1.7L) μ in (3 + 2.5L) μ in	Comparison to Horizontal Measuring System	
Pi Tapes ²	Length	Up to 12 in	(40 + 1L) μ in (10 + 3L) μ in	Comparison to Laser System
	Thickness	(12 to 200) in	240 μ in	Micrometer
Parallels ²	Steel	Up to 18 in	(96 + 1.8L) μ in	Comparison to Electronic Amplifier with Probe, Surface Plate
	Granite	Up to 18 in	(49 + 0.7L) μ in	
Pitch Micrometer Standard ²	Length	(1 to 65) in	(3.4 + 3.5L) μ in	Comparison to Horizontal Measuring System
	Angle	60°	0.004° (70 μ in/in)	Vision System
Radius Gages	(0.015 625 to 0.5) in	300 μ in	Comparison to Vision System	
Sine Plates/Bars ² –	Top Surface Flatness	Up to 0.1 in	(41 + 2.2L) μ in	Comparison to Electronic Amplifier with Probe
	Overall Length	Up to 10 in	(3.4 + 3.5L) μ in	Horizontal Measuring System
Squares ²	Up to 18 in	0.000 32° (5.6 μ in/in)	Comparison to Electronic Amplifier with Probe, Master Square	
Straight Edges ² (Straightness)	Up to 60 in	(208 + 2.3L) μ in	Comparison to Electronic Amplifier with Probe, Surface Plate	
Tapered Plugs ²	Pitch Diameter	(0.062 5 to 6) in	(137 + 3.3L) μ in	Comparison to Horizontal Measuring System, Sine Block, Thread Wires, Height Gage
	Major Diameter	(0.062 5 to 6) in	(123 + 6.7L) μ in	
	Step Height	-	280 μ in	

Length – Dimensional Metrology
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Roundness Machine Roundness (Spindle Performance)	Up to 0.016 in	15 μ in	Comparison to Master Sphere
Tapered Rings Pitch Diameter	(0.0625 to 6) in	160 μ in	Comparison to NPT Master Plug, Electronic Amplifier with Probe
Step Height	-	5 μ in	Height Gage
Thickness Gages ^{2,7} Dial	Up to 1 in	410 μ in	Comparison to Gage Blocks
Digital	Up to 1 in	44 μ in	
Thread Micrometers ² (Screw Thread, Pitch Point) Linearity ⁷	Up to 12 in	(44 + 2.6L) μ in	Comparison to Gage Blocks, Thread Setting Plug
Anvil Wear	-	690 μ in	
Granite V Blocks – Side Parallelism, V Parallelism, Squareness ²	Up to 12 in	(51 + 0.47L) μ in	Comparison to Electronic Amplifier with Probe, Surface Plate
Extensometers ¹	Up to 2 in	16 μ in	Comparison to Extensometer Calibrator
Extensometers ¹ Gage Length	(0 to 2) in	78 μ in	Comparison to Caliper

Mass and Mass Related
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ Source and Measure	(0.035 to 16) ozf (1 to 10) lbf (10 to 50) lbf (50 to 500) lbf	0.017 % of reading 0.018 % of reading 0.018 % of reading 0.036 % of reading	Comparison to Dead Weights
Force ¹ Source and Measure	(500 to 100 000) lbf	0.04 % of reading	Comparison to Load Cells

Mass and Mass Related

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ Source and Measure	(30 000 to 400 000) lbf	0.29 % of applied value	Comparison to Load Cells, Class A (compression only)
Test Machine Crosshead Displacement ^{1,2}	Up to 1 in (1 to 36) in	0.000 3 in (150 + 146L) μ in	Comparison to Indicator Indicator with Gage Blocks
Cable Tensiometers	Up to 600 lb (600 to 2 000) lb	1.2 % of applied value 1.3 % of applied value	Comparison to Dead Weight Load Cells
Viscometers ¹	Up to 25 cP (25 to 1 500) cP (1 500 to 75 000) cP	0.33 % of reading 0.52 % of reading 0.55 % of reading	Comparison to Viscosity Standards
Pressure ¹ (Absolute)	(10 to 17) psia	0.000 4 psi	Comparison to Pressure Calibrator
Pressure (Gauge)	(-14.5 to -0.5) psi (1 to 500) psi (500 to 10 000) psi	0.006 5 % of reading 0.006 5 % of reading 0.007 % of reading	Comparison to Dead Weight Tester
Pressure (Gauge)	(0 to 2) inH ₂ O (2 to 60) inH ₂ O	0.000 35 inH ₂ O 0.009 1 % of reading + 0.000 3 inH ₂ O	Comparison to Fluke 7250LP Low Pressure Calibrator
Mass Flow (Gas)	(1 to 10) sccm (10 to 50 000) sccm (50 to 500) slpm	0.22 % of reading 0.17 % of reading 0.2 % of reading	Comparison to Fluke molbloc Flow Calibration System Mesa Flow System
Air Velocity	30 ft/min (40 to 60) ft/min (60 to 150) ft/min (150 to 275) ft/min (275 to 9000) ft/min	5.1 % of reading 2.6 % of reading 1.2 % of reading 0.99 % of reading 0.74 % of reading	Comparison to Wind Tunnel with Pitot Tube
Torque Tools ¹	(2 to 20) ozf·in (20 to 200) ozf·in (5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 2 000) lbf·ft	0.1 % of reading + 0.006 1 ozf·in 0.08% of reading + 0.14 ozf·in 0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester

Mass and Mass Related
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Torque Transducers ¹	0.5 ozf·in to 1 000 lbf·ft (1 000 to 2 000) lbf·ft	0.08 % of reading 0.09 % of reading	Comparison to Dead Weights, Torque Arms
Graduated Cylinders	(1 to 200) mL (100 to 1 000) mL (600 to 6 000) mL	1.9 µL 3.2 µL 26 µL	Comparison to Balances
Pipettes	Up to 1 µL (1 to 5) µL (5 to 10) µL (10 to 20) µL (20 to 50) µL (50 to 100) µL (100 to 200) µL (200 to 500) µL (500 to 1 000) µL (1 000 to 10 000) µL (10 to 20) mL	0.041 µL 0.033 µL 0.028 µL 0.034 µL 0.046 µL 0.061 µL 0.27 µL 0.3 µL 0.79 µL 2.7 µL 5.8 µL	Comparison to Pipette Calibration System
Scales and Balances ^{1,6}	Up to 5 mg (5 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 20) g (20 to 50) g (50 to 100) g (100 to 250) g	5 µg 6 µg 7 µg 12 µg 14 µg 24 µg 86 µg 92 µg	Comparison to OIML Class E2, ASTM E617 Class 1 Weights, and internal calibration procedure utilized in the calibration of the weighing system.
Scales and Balances ^{1,6}	250 g to 1.1 kg (1.1 to 6.1) kg (6.1 to 33) kg	1.4 mg 9 mg 90 mg	Comparison to OIML Class E2, ASTM E617 Class 1 Weights, and internal calibration procedure utilized in the calibration of the weighing system.
Scales and Balances ^{1,6}	(0.5 to 2 000) lb	0.01 % of reading	Comparison to ASTM Class E617 Class 6 Weights and internal calibration procedure utilized in the calibration of the weighing system.

Mass and Mass Related
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Mass	1 mg to 50 g (50 to 100) g (100 to 250) g (250 to 500) g (500 to 1 kg (1 to 6) kg (6 to 25) kg	0.01 mg 0.03 mg 0.12 mg 0.17 mg 0.9 mg 9 mg 90 mg	Comparison to Class 1 Weights, Balances
Micro-indentation Hardness Testers ¹ (Knoop and Vickers)	Repeatability under forces (gf): $100 \leq HK \leq 500$ $HV = 100$	2.1 % of Reading 4.1 % of Reading	Indirect Verification to Hardness Test Blocks
Brinell Hardness Testers ¹	Repeatability at: 500 kgf ≤ 100 HBW ≥ 64 HBW 1 500 kgf ≤ 257 HBW ≥ 91 HBW 3 000 kgf ≤ 587 HBW ≥ 186 HBW	0.025 mm 0.025 mm 0.025 mm 0.03 mm 0.025 mm 0.025 mm	Indirect Verification to Hardness Test Blocks
Rockwell Hardness Testers ¹	HRA Low HRA Middle HRA High HRBW Low HRBW Middle HRBW High HRC Low HRC Middle HRC High HREW Low HREW Middle HREW High HRMW Low HRMW Middle HRMW High	0.69 HRA 0.62 HRA 0.36 HRA 0.71 HRBW 0.53 HRBW 0.9 HRBW 0.54 HRC 0.7 HRC 1.2 HRC 0.49 HREW 0.39 HREW 0.88 HREW 0.65 HRMW 0.55 HRMW 0.65 HRMW	Indirect Verification to Hardness Test Blocks

Mass and Mass Related
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment	
Rockwell Hardness Testers ¹	HR15N Low HR15N Middle HR15N High HR15TW Low HR15TW Middle HR15TW High HR30N Low HR30N Middle HR30N High HR30TW Low HR30TW Middle HR30TW High HR45N Low HR45N Middle HR45N High HR45TW Low HR45TW Middle HR45TW High	0.69 HR15N 0.69 HR15N 0.36 HR15N 0.87 HR15TW 0.72 HR15TW 0.72 HR15TW 0.87 HR30N 0.91 HR30N 0.36 HR30N 0.54 HR30TW 0.72 HR30TW 0.39 HR30TW 0.64 HR45N 1.2 HR45N 0.34 HR45N 0.92 HR45TW 0.92 HR45TW 0.61 HR45TW	Indirect Verification to Hardness Test Blocks	
Durometers	Spring Force Types A, B, E, O Types C, D, and DO Types M, OO, OOO, OOO-S Indenter Dimensions Angle Length Radius	Up to 100 Duro Up to 100 Duro Up to 100 Duro (20 to 40) ^o (0.049 to 0.198) in (0.05 to 0.1) in	0.31 Duro 0.15 Duro 0.32 Duro 0.004 ^o 220 μ in 250 μ in	Full Verification using Shore Durometer Calibrator, Balance Video Measuring Machine

Thermodynamic
Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Measure	(-200 to -20) °C (-20 to 120) °C (120 to 200) °C (200 to 300) °C (300 to 660) °C	0.006 2 °C 0.001 7 °C 0.023 °C 0.023 °C 0.024 °C	Comparison to Fluke 5699 SPRT, Fluke 1590 Super Thermometer
Temperature – Source (Measuring Devices)	(-95 to -20) °C (-20 to 120) °C (120 to 425) °C (425 to 660) °C	0.032 °C 0.001 7 °C 0.038 °C 0.063 °C	Comparison to SPRT, Fluke 1590 Super Thermometer, Liquid Baths, Metrology Well
Radiation (Infrared) Thermometers	(-15 to 0) °C (0 to 100) °C (100 to 200) °C (200 to 350) °C (350 to 500) °C	0.54 °C 0.69 °C 1.1 °C 1.6 °C 2.4 °C	Comparison to Fluke 4180 / 4181 Black Body Calibrators (flat-plate) $\lambda = (8 \text{ to } 14) \mu\text{m}$, $\varepsilon = (0.9 \text{ to } 1)$
Humidity – Measure ¹	(0 to 2) %RH (5 to 10) %RH (10 to 50) %RH (50 to 90) %RH (90 to 95) %RH	1.2 %RH 0.56 %RH 0.5 %RH 0.55 %RH 0.58 %RH	Comparison to Humidity Indicator
Humidity – Source	0 %RH (5 to 10) %RH (10 to 98) %RH	0.62 %RH 0.56 %RH 0.5 % of reading	Comparison to Nitrogen with Rotronic Humidity Indicator, Thunder Scientific 2900 Two-Pressure Generating System
Temperature Uniformity Survey ¹ (TUS)	Up to 200 °F (200 to 1 000) °F (1 000 to 1 400) °F (1 400 to 1 800) °F (1 800 to 2 000) °F (2 000 to 2 300) °F	1.6 °F 1.8 °F 2.1 °F 2.9 °F 4.1 °F 4.3 °F	Comparison to Temperature Datalogger, Type K Thermocouples per AMS 2750.

Time and Frequency

Burnsville, MN

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Reference ⁴	10 MHz	5×10^{-11} MHz	Comparison to SRS FS Rubidium GPS Disciplined Oscillator

DIMENSIONAL MEASUREMENT
2 Dimensional

Burnsville, MN

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Angle	(0.25 to 365)°	0.000 69° (12 μ in/ in)	Comparison to Gage Blocks, Gage Amplifier, Sine Bar
Angle	(0.25 to 365)°	0.004°	Comparison to Coordinate Measuring Machine
2D – Non-contact	(12 x 8 x 4) in	(44 + 1L) μ in	Comparison to Vision System
Roundness, Cylindricity	Up to 150 mm	0.02 μ m	Comparison to Rondcom41c
Surface Finish Analysis	Up to 118 μ in (118.1 to 500) μ in	1 % of reading + 0.5 μ in 1.1 % of reading + 0.6 μ in	Comparison to Profilometer, Master Patch

3 Dimensional

Burnsville, MN

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact ¹	(500 x 700 x 500) mm	(0.92 + 0.002 8L) μ m	Comparison to Coordinate Measuring Machine

[Return to Site listing \(top\)](#)
[Go to Notes \(bottom\)](#)

Services performed at satellite laboratory

1208 Allanson Road,
Mundelein, IL 60060
847-566-3700

General Manager: Mark Key mkey@martincalibration.com

CALIBRATION

Chemical Quantities

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
pH Meters ¹	4 pH 7 pH 10 pH	0.016 pH 0.016 pH 0.016 pH	Comparison to Buffer Solutions

Electrical – DC/Low Frequency

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹ (Fixed Artifact)	10 V	0.3 μ V/V	Comparison to Fluke 732B Voltage Standards with Fluke Maps
DC Voltage – Source ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	20 nV 100 nV 22 μ V/V + 25 nV 5.3 μ V/V 0.5 μ V/V 0.31 μ V/V 0.35 μ V/V 1 μ V/V	Comparison to MI Potentiometer/ Divider And Fluke 5720A Multi Product Calibrator
DC Voltage – Measure ¹	0V Up to 1 mV (1 to 10) mV (10 to 100) mV (100 mV to 1) V (1 to 10) V (10 to 100) V (100 to 1 100) V	20 nV 100 nV 22 μ V/V + 25 nV 5.3 μ V/V 0.5 μ V/V 0.31 μ V/V 0.35 μ V/V 1 μ V/V	Comparison to Nano Voltmeter, Fluke 732B Voltage Standard with MI Potentiometer/ Divider
DC Voltage – Measure ¹	(1.05 to 100) kV	0.1 % of reading	Comparison to Hipotronics KVM100-A High Voltage Meter

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Current – Source & Measure ¹	Up to 100 nA (0.1 to 1) μ A (1 to 10) μ A (10 to 100) μ A (0.1 to 1) mA (1 to 10) mA (10 to 100) mA (0.1 to 1) A	22 pA 30 μ A/A 6.8 μ A/A 6.2 μ A/A 4.1 μ A/A 4.2 μ A/A 3.9 μ A/A 17 μ A/A	Comparison to Standard Resistors and DMM, Multifunction Calibrator
DC Current – Source & Measure ¹	(1 to 10) A (10 to 20) A (20 to 100) A	80 μ A/A + 80 μ A 80 μ A/A + 800 μ A 80 μ A/A + 40 mA	Comparison to Fluke 52120A Amplifier
DC Current – Source ¹	(100 to 150) A (150 to 1 025) A	5 mA/A + 20 mA 5.1 mA/A + 0.9 A	Comparison to Fluke 5520A Multi Product Calibrator with 50-turn Coil
AC Voltage – Source & Measure ¹	Up to 2.2 mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz (2.2 to 7) mV (10 to 20) Hz (20 to 40) Hz (0.04 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (300 to 500) kHz (0.5 to 1) MHz	0.035 % of reading + 1.3 μ V 0.037 % of reading + 1.3 μ V 0.04 % of reading + 1.3 μ V 0.025 % of reading + 2 μ V 0.027 % of reading + 2.5 μ V 0.033 % of reading + 4 μ V 0.036 % of reading + 8 μ V 0.02 % of reading + 8 μ V 0.023 % of reading + 1.3 μ V 0.024 % of reading + 1.3 μ V 0.022 % of reading + 1.3 μ V 0.014 % of reading + 2 μ V 0.009 % of reading + 2.5 μ V 0.029 % of reading + 4 μ V 0.055 % of reading + 8 μ V 0.056 % of reading + 8 μ V	Comparison to Fluke 5790A AC Standard w/ Fluke 5720A Multi Product Calibrator
AC Current – Source and Measure ¹	Up to 10 mA (0.01 to 100) kHz (10 to 20) mA (0.01 to 100) kHz (20 to 200) mA (0.01 to 100) kHz	250 μ A/A 250 μ A/A 250 μ A/A	Comparison to Fluke 5720A Multi Product Calibrator, Fluke 5725A Amplifier, with A40B Current Shunts

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source and Measure ¹	(0.2 A to 20) A 0.01 to 1) kHz (1 to 10) kHz (10 to 30) kHz (30 to 100) kHz	250 μ A/A 250 μ A/A 300 μ A/A 350 μ A/A	Comparison to Fluke 5720A Multi Product Calibrator, Fluke 5725A Amplifier with A40B Current Shunts
AC Current – Source and Measure ¹	(20 to 100) A	0.015 % of reading	Comparison to Fluke 52120A Amplifier
AC Current – Source ¹	(45 to 65) Hz (10 to 16.5) A (16.5 to 150) A (150 to 1 025) A (65 to 440) Hz (10 to 16.5) A (16.5 to 150) A (150 to 1 025) A	5.9 mA/A + 30 mA 5.7 mA/A + 25 mA 5.7 mA/A + 0.9 A 11 mA/A + 30 mA 10 mA/A + 0.25 A 13 mA/A + 0.9 A	Comparison to Fluke 5520A Multi Product Calibrator with 50-turn Coil
AC Current – Measure ¹	Up to 200 μ A (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz 200 μ A to 2 mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (2 to 20) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz (30 to 100) kHz (20 to 200) mA (1 to 10) Hz 10 Hz to 10 kHz (10 to 30) kHz 200 mA to 2 A 10 Hz to 2 kHz (2 to 10) kHz (10 to 30) kHz	0.62 mA/A 0.54 mA/A 0.94 mA/A 8.4 mA/A 0.6 mA/A 0.54 mA/A 0.94 mA/A 4.2 mA/A 0.6 mA/A 0.54 mA/A 0.94 mA/A 4.2 mA/A 0.57 mA/A 0.49 mA/A 0.83 mA/A 0.83 mA/A 0.93 mA/A 3.2 mA/A	Comparison to Fluke 8508A 8.5 Digit Multimeter

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure ¹	(2 to 20) A 10 Hz to 2 kHz (2 to 10) kHz	1 mA/A 2.7 mA/A	Comparison to Fluke 8508A 8.5 Digit Multimeter
Resistance – Source ¹ (Fixed Artifacts)	0.001 Ω 0.01Ω 0.1 Ω 1Ω 10Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ 1 GΩ	3.5 μΩ/Ω 4.3 μΩ/Ω 1.5 μΩ/Ω 0.85 μΩ/Ω 0.66 μΩ/Ω 1.7 μΩ/Ω 1.2 μΩ/Ω 2.4 μΩ/Ω 0.57 μΩ/Ω 1.3 μΩ/Ω 14 μΩ/Ω 130 μΩ/Ω 0.32 μΩ/Ω	Comparison to Standard resistors
Resistance – Source ¹ (Variable Artifacts)	(0.01 to 10) MΩ (0.01 to 10) GΩ	10 μΩ/Ω 0.5 % of reading	Comparison to Decade Resistors with Bridge, DMM
Resistance – Source ¹ (Variable Artifact)	(10 to 100) GΩ	1.2 % of reading	Comparison to Decade Resistor
Resistance – Measure ¹ Normal Mode	(10 to 100) μΩ (0.1 to 1) mΩ (1 to 10) mΩ (10 o 100) mΩ (0.1 to 1) Ω (1 to 10) Ω (10 to 100) Ω (0.01 to 1) kΩ (1 to 10) kΩ (10 o 100) kΩ (0.1 to 1) MΩ (1 to 10) MΩ (10 to 200) MΩ (0.2 to 2) GΩ (2 to 20) GΩ	0.15 % of reading 15 μΩ/Ω 5.1 μΩ/Ω 1.8 μΩ/Ω 0.92 μΩ/Ω 0.74 μΩ/Ω 1.7 μΩ/Ω 1.3 μΩ/Ω 2.4 μΩ/Ω 1.1 μΩ/Ω 8.2 μΩ/Ω 21 μΩ/Ω 72 μΩ/Ω + 1 kΩ 0.18 mΩ/Ω + 100 kΩ 0.67 mΩ/Ω + 10 MΩ	Comparison to Decade Resistors with Bridge, DMM

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment	
Resistance – Measure ¹ High Voltage Mode up to 200 V	(2 to 20) MΩ (20 to 200) MΩ 200 MΩ to 2 GΩ (2 to 20) GΩ	15 $\mu\Omega/\Omega$ + 10 Ω 60 $\mu\Omega/\Omega$ + 1 kΩ 0.15 mΩ/Ω + 100 kΩ 0.53 mΩ/Ω + 10 MΩ	Comparison to Decade Resistors with Bridge, DMM	
Capacitance – Measure ¹	1 pF @ 1 kHz 10 pF @ 1 kHz 100 pF @ 1 kHz 1 nF 1 kHz 1 μ F @ 1 kHz	1.9 mF/F 1.1 mF/F 1.2 mF/F 1.2 mF/F 1.2 mF/F	Comparison to QuadTech 1730 LCR Meter	
Capacitance – Source ¹ (Fixed Artifacts)	100 Hz, 1 kHz 1 pF 1 nF 10 nF 100 nF 1 μ F	1.8 mF/F 0.23 mF/F 0.25 mF/F 0.21 mF/F 0.25 mF/F	Comparison to Standard Capacitors	
Capacitance – Source ¹ (Simulation)	10 Hz to 10 kHz 10 Hz to 3 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz 10 Hz to 1 kHz (10 to 600) Hz 10 Hz to 300 Hz 10 Hz to 150 Hz 10 Hz to 120 Hz 10 Hz to 80 Hz (0 to 50) Hz (0 to 20) Hz (0 to 6) Hz (0 to 2) Hz (0 to 0.6) Hz (0 to 0.2) Hz	0.19 nF to 1.1 nF (1.1 to 3.3) nF (3.3 to 11) nF (11 to 110) nF (110 to 330) nF 330 nF to 1.1 μ F (1.1 to 3.3) μ F (3.3 to 11) μ F (11 to 33) μ F (33 to 110) μ F (110 to 330) μ F 330 μ F to 1.1 mF (1.1 to 3.3) mF (3.3 to 11) mF (11 to 33) mF (33 to 110) mF	15 mF/F 8.4 mF/F 3.6 mF/F 3.6 mF/F 3.7 mF/F 3.6 mF/F 3.6 mF/F 3.6 mF/F 5.1 mF/F 5.6 mF/F 5.6 mF/F 8.7 mF/F 5.5 mF/F 5.5 mF/F 8.5 mF/F 12 mF/F	Comparison to Fluke 5520A Multi Product Calibrator
Inductance – Measure ¹	1 kHz	100 μ H 1 mH 10 mH 100 mH 1 H	1.2 mH/H 1.2 mH/H 1.2 mH/H 1.2 mH/H 1.2 mH/H	Comparison to QuadTech 1730 LCR Meter

Electrical – DC/Low Frequency

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Inductance – Source ¹ (Fixed Artifacts)	100 Hz 500 µH 2 mH 20 mH 1 H 10 H 1 kHz 500 µH 2 mH 20 mH 1 H 10 H	1.2 mH/H 1.1 mH/H 1.1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H 1 mH/H	Comparison to Standard Inductors
Oscilloscopes ¹			
Square Wave Signal 50 Ω load	1 kHz 40 µV to 5 V	1 mV/V	
Square Wave Signal 1 MΩ load	1 kHz 40 µV to 5 V	1 mV/V	
DC Voltage Signal 50 Ω load 1 MΩ load	1 mV to 5 V 1 mV to 200 V	0.26 mV/V 0.25 mV/V	
Leveled Sine Wave Amplitude	5 mV to 5 V	15 mV/V	
Leveled Sine Wave Flatness (relative to 50 kHz)	4.4 mVp-p to 5.6 Vp-p 0.1 Hz to 300 MHz (300 to 550) MHz 4.4 mVp-p to 3.3 Vp-p 550 MHz to 1.1 GHz (1.1 to 3.2) GHz	43 mV/V 43 mV/V 52 mV/V 52 mV/V	Comparison to Fluke 9500B/3200/9530 Oscilloscope Calibrator
Time Marker Source and Period (50 Ω load)	9 ns to 55 s	0.25 µs/s	
Rise/Fall Time – Source	150 ps	27 ps	
Pulse Width – Source	(1 to 100) ns	52 ms/s	

Electrical – DC/Low Frequency

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	<p>Type B</p> <p>(250 to 350) °C (350 to 445) °C (445 to 580) °C (580 to 750) °C (750 to 1 000) °C (1 000 to 1 820) °C</p> <p>Type C</p> <p>(0 to 250) °C (250 to 1 000) °C (1 000 to 1 500) °C (1 500 to 1 800) °C (1 800 to 2 000) °C (2 000 to 2 250) °C (2 250 to 2 315) °C</p> <p>Type E</p> <p>(-270 to -245) °C (-245 to -195) °C (-195 to -155) °C (-155 to -90) °C (-90 to 15) °C (15 to 890) °C (890 to 1 000) °C</p> <p>Type J</p> <p>(-210 to -180) °C (-180 to -120) °C (-120 to -50) °C (-50 to 990) °C (990 to 1 200) °C</p> <p>Type K</p> <p>(-270 to -255) °C (-255 to -195) °C (-195 to -115) °C (-115 to -55) °C (-55 to 1 000) °C (1 000 to 1 372) °C</p>	<p>1.1 °C 0.85 °C 0.67 °C 0.52 °C 0.43 °C 0.33 °C</p> <p>0.23 °C 0.18 °C 0.21 °C 0.24 °C 0.27 °C 0.33 °C 0.37 °C</p> <p>1.4 °C 0.21 °C 0.12 °C 0.09 °C 0.08 °C 0.07 °C 0.08 °C</p> <p>0.14 °C 0.12 °C 0.09 °C 0.08 °C 0.08 °C</p> <p>2.5 °C 0.81 °C 0.14 °C 0.10 °C 0.08 °C 0.09 °C</p>	Comparison to Ectron 1140A Thermocouple Simulator

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type N (-270 to -260) °C (-260 to -200) °C (-200 to -140) °C (-140 to -70) °C (-70 to 25) °C (25 to 160) °C (160 to 1 300) °C Type R (-50 to -30) °C (-30 to 45) °C (45 to 160) °C (160 to 380) °C (380 to 775) °C (775 to 1 768) °C Type S (-50 to -30) °C (-30 to -45) °C (-45 to -105) °C (-105 to 310) °C (310 to 615) °C (615 to 1 768) °C Type T (-270 to -255) °C (-255 to -240) °C (-240 to -210) °C (-210 to -150) °C (-150 to -40) °C (-40 to 100) °C (100 to 400) °C	5.8 °C 1.2 °C 0.27 °C 0.17 °C 0.14 °C 0.12 °C 0.1 °C 0.75 °C 0.63 °C 0.46 °C 0.35 °C 0.3 °C 0.25 °C 0.71 °C 0.64 °C 0.46 °C 0.38 °C 0.33 °C 0.3 °C 2.1 °C 0.56 °C 0.35 °C 0.21 °C 0.14 °C 0.09 °C 0.08 °C	Comparison to Ectron 1140A Thermocouple Simulator

Electrical – DC/Low Frequency

Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 395 100 Ω (-200 to 0) °C	0.06 °C	Comparison to Fluke 5520A Multi Product Calibrator
	(0 to 100) °C	0.08 °C	
	(100 to 300) °C	0.11 °C	
	(300 to 400) °C	0.12 °C	
	(400 to 630) °C	0.14 °C	
	(630 to 800) °C	0.27 °C	
	PT 3926 100 Ω (-200 to 0) °C	0.06 °C	
	(0 to 100) °C	0.08 °C	
	(100 to 300) °C	0.11 °C	
	(300 to 400) °C	0.12 °C	
PT 3916 100 Ω (-200 to -190) °C	(400 to 630) °C	0.14 °C	
	(-190 to -80) °C	0.29 °C	
	(-80 to 0) °C	0.05 °C	
	(0 to 100) °C	0.06 °C	
	(100 to 260) °C	0.07 °C	
	(260 to 300) °C	0.08 °C	
	(300 to 400) °C	0.09 °C	
	(400 to 600) °C	0.11 °C	
	(600 to 630) °C	0.12 °C	
	PT 385 200 Ω (-200 to 100) °C	0.12 °C	
PT 385 500 Ω (-200 to -80) °C	(100 to 260) °C	0.05 °C	
	(260 to 300) °C	0.06 °C	
	(300 to 400) °C	0.14 °C	
	(400 to 600) °C	0.15 °C	
	(600 to 630) °C	0.16 °C	
	PT 385 500 Ω (-80 to 100) °C	0.19 °C	
PT 385 500 Ω (100 to 260) °C	(100 to 260) °C	0.05 °C	
	(260 to 400) °C	0.06 °C	
	(400 to 600) °C	0.07 °C	
	(600 to 630) °C	0.09 °C	
	PT 385 500 Ω (400 to 600) °C	0.01 °C	
	PT 385 500 Ω (600 to 630) °C	0.13 °C	

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 395 100 Ω (-200 to 0) °C	0.06 °C	Comparison to Fluke 5520A Multi Product Calibrator
	(0 to 100) °C	0.08 °C	
	(100 to 300) °C	0.11 °C	
	(300 to 400) °C	0.12 °C	
	(400 to 630) °C	0.14 °C	
	(630 to 800) °C	0.27 °C	
	PT 3926 100 Ω (-200 to 0) °C	0.06 °C	
	(0 to 100) °C	0.08 °C	
	(100 to 300) °C	0.11 °C	
	(300 to 400) °C	0.12 °C	
	(400 to 630) °C	0.14 °C	
	PT 3916 100 Ω (-200 to -190) °C	0.29 °C	
	(-190 to -80) °C	0.05 °C	
	(-80 to 0) °C	0.06 °C	
	(0 to 100) °C	0.07 °C	
PT 385 200 Ω	(100 to 260) °C	0.08 °C	
	(260 to 300) °C	0.09 °C	
	(300 to 400) °C	0.11 °C	
	(400 to 600) °C	0.12 °C	
	(600 to 630) °C	0.27 °C	
	(-200 to 100) °C	0.05 °C	
	(100 to 260) °C	0.06 °C	
	(260 to 300) °C	0.14 °C	
	(300 to 400) °C	0.15 °C	
	(400 to 600) °C	0.16 °C	
PT 385 500 Ω	(600 to 630) °C	0.19 °C	
	(-200 to -80) °C	0.05 °C	
	(-80 to 100) °C	0.06 °C	
	(100 to 260) °C	0.07 °C	
	(260 to 400) °C	0.09 °C	
	(400 to 600) °C	0.01 °C	
	(600 to 630) °C	0.13 °C	

Electrical – DC/Low Frequency
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	PT 385 1 000 Ω (-200 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 600) °C (600 to 630) °C PtNi 120 Ω (-80 to 100) °C (100 to 260) °C Cu 427 10 Ω (-100 to 260) °C	0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.27 °C 0.09 °C 0.16 °C 0.35 °C	Comparison to Fluke 5520A Multi Product Calibrator

Length – Dimensional Metrology
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Gage Blocks ²	(0.01 to 1) in (1 to 2) in 4 in	(1.4 + 1.3L) μ in (1 + 1.3L) μ in 9.4 μ in	Comparison to Reference Gage Blocks, Gage Block Comparator
Gage Blocks ²	100 mm (125 to 500) mm	0.17 μ m (0.06 + 0.000 6L) μ m	Comparison to Primary Master Gage Blocks
Indicators ^{1,2}	(0.000 1 to 6) in	(5 + 8L) μ in	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5 + 8L) μ in (410 + 2L) μ in	Comparison to Gage Blocks
Outside Micrometers ^{1,2} Linearity	Up to 12 in (12 to 24) in	(5 + 8L) μ in (34 + 4.6L) μ in	Comparison to Gage Blocks
Anvil Flatness	Up to 1 inD (0 to 84) μ in	4 μ in	Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(45 + 2L) μ in (7 + 3L) μ in	Comparison to Gage Blocks
Grind Gages	Up to 100 mm	0.35 mm	Comparison to Digital Indicator

Length – Dimensional Metrology
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Coating Thickness Gages ^{1,2,7}	Up to 0.02 in	58 μ in	Comparison to Coating Thickness Standards
Coating Thickness Gage Standards	Up to 0.1 in	21 μ in	Comparison to Horizontal Measuring Machine
External Diameter ^{1,2}	(0.000 1 to 12) in	(3 + 3L) μ in	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	(3 + 3L) μ in	Comparison to Horizontal Measuring Machine
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(87 + 1.9L) μ in	Comparison to Horizontal Measuring Machine
Major Diameter	Pitch 90 – 4 TPI Up to 4 in	(3.5 + 4.6L) μ in	Thread Measuring Wires
Optical Comparators ^{1,2} Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11L) μ in (30 + 7.5L) μ in	Comparison to Glass Scale
Magnification	(5 to 100) X	350 μ in	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 238 in dL	(25 + 2.9L) μ in	Comparison to Laser System
Local Area Flatness	Up to 238 in dL	34 μ in	Repeat-O-Meter
Surface Finish Artifacts	Up to 500 μ in	2.4 μ in	Comparison to Profilometer, Master Patch
Profilometers ¹	Up to 500 μ in	3.1 μ in	Comparison to Master Patch
Optical Flats Parallelism	Up to 6 in D (0 to 80) μ in	2.7 μ in	Comparison to Gage Block Comparator,
Flatness	-	3.5 μ in	Master Flat

Length – Dimensional Metrology
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
CMMs ^{1,2}	Linearity	Up to 144 in	(25 + 2.4L) μ in
	Volumetric Repeatability	(6 to 24) in (0.5 to 2) in	66 μ in 45 μ in
VMMs ^{1,2}	X, Y Linearity	Up to 12 in	(32 + 4.1L) μ in
	Rulers and Pi Tapes	Up to 12 in	0.000 88 in
Horizontal Measuring Systems ^{1,2}	Horizontal Measuring Systems ^{1,2}	Up to 8 in (8 to 60) in	(6 + 1.7L) μ in (3 + 2.5L) μ in
	Protractors	(0 to 90) $^{\circ}$	0.16 $^{\circ}$
Length Standards ²		(1 to 60) in	(3.4 + 3.5L) μ in
Inside Micrometers ²		Up to 8 in (8 to 60) in	(6 + 1.7L) μ in (3 + 2.5L) μ in

Mass and Mass Related
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ Source and Measure	(0.035 to 16) ozf (1 to 10) lbf (10 to 50) lbf (50 to 500) lbf	0.018 % of reading 0.018 % of reading 0.018 % of reading 0.036 % of reading	Comparison to Dead Weights
Force ¹ Source and Measure	(500 to 1 000) lbf (1 000 to 10 000) lbf (10 000 to 100 000) lbf	0.05 % of reading 0.06 % of reading 0.06 % of reading	Comparison to Class AA Load Cells
Force ¹ Source and Measure	(30 000 to 400 000) lbf	0.29 % of applied value	Comparison to Load Cells, Class A (compression only)
Pressure ¹ (Absolute)	(10 to 17) psia	0.000 4 psi	Comparison to Pressure Calibrator
Pressure ¹ (Gauge)	(-14.5 to -0.5) psig (1 to 16 000) psig	0.006 5 % of reading 0.006 5 % of reading	Comparison to Deadweight Tester

Mass and Mass Related
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Torque Tools ¹	0.5 ozf·in to 200 ozf·in (5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 1 000) lbf·ft	0.56 % of reading 0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester
Scales and Balances ^{1,6}	Up to 5 mg (5 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 20) g (20 to 50) g (50 to 100) g (100 to 250) g 250 g to 1.1 kg (1.1 to 6.1) kg (6.1 to 33) kg	5 µg 6 µg 7 µg 12 µg 14 µg 24 µg 86 µg 92 µg 1.4 mg 9 mg 90 mg	Comparison to OIML Class E2, ASTM E617 Class 1 Weights, and internal calibration procedure utilized in the calibration of the weighing system.
Scales and Balances ^{1,6}	(0.5 to 2 000) lb	0.01 % of reading	Comparison to ASTM E617 Class 6 Weights, and internal calibration procedure utilized in the calibration of the weighing system.
Indirect Verification of Micro-indentation Hardness Testers ¹ (Knoop and Vickers)	Repeatability under forces (gf): $100 \leq HK \leq 500$ $HV = 100$	2.1 % of Reading 4.1 % of Reading	Indirect Verification to Hardness Test Blocks
Brinell Hardness Testers ¹ Repeatability	500 kgf ≤ 100 HBW ≥ 64 HBW 1 500 kgf ≤ 257 HBW ≥ 91 HBW 3 000 kgf ≤ 587 HBW ≥ 186 HBW	0.025 mm 0.025 mm 0.025 mm 0.03 mm 0.025 mm 0.025 mm	Indirect Verification to Hardness Test Blocks

Mass and Mass Related
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Rockwell Hardness Testers ¹	HRA Low HRA Middle HRA High HRBW Low HRBW Middle HRBW High HRC Low HRC Middle HRC High	0.69 HRA 0.62 HRA 0.362 HRA 0.71 HRBW 0.53 HRBW 0.9 HRBW 0.54 HRC 0.7 HRC 0.38 HRC	Indirect Verification to Hardness Test Blocks
Rockwell Hardness Testers ¹	HREW Low HREW Middle HREW High HRMW Low HRMW Middle HRMW High HR15N Low HR15N Middle HR15N High HR15TW Low HR15TW Middle HR15TW High HR30N Low HR30N Middle HR30N High HR30TW Low HR30TW Middle HR30TW High HR45N Low HR45N Middle HR45N High	0.49 HREW 0.39 HREW 0.88 HREW 0.65 HRMW 0.55 HRMW 0.65 HRMW 0.69 HR15N 0.69 HR15N 0.36 HR15N 0.87 HR15TW 0.72 HR15TW 0.72 HR15TW 0.87 HR30N 0.91 HR30N 0.36 HR30N 0.54 HR30TW 0.72 HR30TW 0.39 HR30TW 0.64 HR45N 1.2 HR45N 0.34 HR45N	Indirect Verification to Hardness Test Blocks
Rockwell Hardness Testers ¹	HR45TW Low HR45TW Middle HR45TW High	0.92 HR45TW 0.92 HR45TW 0.61 HR45TW	Indirect Verification to Hardness Test Blocks

This Scope of Accreditation, version 020, was last updated on: 31 January 2026 and is valid only when accompanied by the Certificate.

Page 52 of 70

Mass and Mass Related
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Durometers			
Spring Force			
Types A, B, E, O	(1.3 to 8.05) N	0.023 N	Full Verification using Shore Durometer
Types C, D, and DO	(4.445 to 44.5) N	0.06 N	Calibrator,
Types OO, OOO, OOO-S	(0.294 to 1.932) N	0.002 N	Balance
Indenter Dimensions			
Angle	(20 to 40)°	0.05°	Video Measuring Machine
Length	(0.049 to 0.198) in	220 μ in	
Radius	(0.05 to 0.1) in	250 μ in	

Thermodynamic
Mundelein, IL

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature - Measure	(-200 to -20) °C (-20 to 120) °C (120 to 200) °C (200 to 300) °C (300 to 600) °C	0.006 2 °C 0.001 7 °C 0.023 °C 0.023 °C 0.024 °C	Comparison to Fluke 5699 SPRT, Fluke 1590 Super Thermometer
Temperature – Source	(-20 to 120) °C (120 to 425) °C (425 to 660) °C	0.001 7 °C 0.038 °C 0.063 °C	Comparison to SPRT, Fluke 1590 Super Thermometer Liquid Baths, Metrology Well
Radiation (Infrared) Thermometers	(50 to 100) °C (100 to 200) °C (200 to 250) °C (250 to 300) °C (300 to 400) °C (400 to 500) °C	0.8 °C 0.93 °C 0.96 °C 1 °C 1.1 °C 1.2 °C	Comparison to Black Body Calibrator monitored with a PRT (flat plate) $\epsilon = 0.95, \lambda = (8 \text{ to } 14) \mu\text{m}$
Humidity Measure ¹	(10 to 90) %RH (95 to 98) %RH	1.1 %RH 2 %RH	Comparison to Humidity Indicator
Temperature Uniformity Survey ¹ (TUS)	Up to 200 °F (200 to 1 000) °F (1 000 to 1 400) °F (1 400 to 1 800) °F (1 800 to 2 000) °F (2 000 to 2 300) °F	1.6 °F 1.8 °F 2.1 °F 2.9 °F 4.1 °F 4.3 °F	Comparison to Temperature Datalogger, Type K Thermocouples per AMS 2750.

This Scope of Accreditation, version 020, was last updated on: 31 January 2026 and is valid only when accompanied by the Certificate.

Page 53 of 70

DIMENSIONAL MEASUREMENT

2 Dimensional

Mundelein, IL

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
2-D Non-contact ²	(6 x 8) in	(239 + 1.4L) μ in	Comparison to Vision System
Surface Finish Analysis	Up to 500 μ in	2.4 μ in	Comparison to Profilometer, Master Patch

3 Dimensional

Mundelein, IL

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact ²	(16 x 18 x 14) in	(209 + 1.2L) μ in	Comparison to Coordinate Measuring Machine

[Return to Site listing \(top\)](#)

[Go to Notes \(bottom\)](#)

Services performed at satellite laboratory

2524 Alpine Road
 Eau Claire, WI 54703
 715-214-1130

General Manager: Tyler Kampsula tkampsula@martincalibration.com

CALIBRATION

Electrical – DC/Low Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
DC Voltage – Source ¹	Up to 330 mV 330 mV to 3.3 V (3.3 to 33) V (33 to 330) V (330 to 1 020) V	21 μ V/V + 1 μ V 11 μ V/V + 2 μ V 13 μ V/V + 20 μ V 18 μ V/V + 150 μ V 18 μ V/V + 1.5 mV	Comparison to Fluke 5522A Multi Product Calibrator
DC Voltage – Measure ¹	Up to 100 mV 100 mV to 1 V (1 to 10) V (10 to 100) V 100 V to 1 kV	12 μ V/V + 0.3 μ V 10 μ V/V + 0.3 μ V 10 μ V/V + 0.5 μ V 13 μ V/V + 30 μ V 13 μ V/V + 100 μ V	Comparison to Keysight 3458A 8.5 Digit Multimeter
DC Current – Source ¹	Up to 330 μ A 330 μ A to 3.3 mA (3.3 to 33) mA (33 to 330) mA 330 mA to 1.1 A (1.1 to 3) A (3 to 11) A (11 to 20) A	151 μ A/A + 20 nA 101 μ A/A + 50 nA 101 μ A/A + 250 nA 102 μ A/A + 2.5 μ A 201 μ A/A + 40 μ A 386 μ A/A + 40 μ A 504 μ A/A + 0.5 mA 1 mA/A + 0.75 mA	Comparison to Fluke 5522A Multi Product Calibrator
DC Current – Measure ¹	(10 to 100) μ A 100 μ A to 1 mA (1 to 10) mA (10 to 100) mA 100 mA to 1 A	29 μ A/A + 0.8 nA 27 μ A/A + 5 nA 28 μ A/A + 50 nA 46 μ A/A + 0.5 μ A 121 μ A/A + 10 μ A	Comparison to Keysight 3458A 8.5 Digit Multimeter

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Source	Up to 33 mV (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (33 to 330) mV (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz 330 mV to 3.3 V (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 500) kHz (3.3 to 33) V (10 to 45) Hz 45 Hz to 10 kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (33 to 330) V 45 Hz to 1 kHz (1 to 10) kHz (10 to 20) kHz (20 to 50) kHz (50 to 100) kHz (330 to 1020) V 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz	806 μ V/V + 6 μ V 176 μ V/V + 6 μ V 220 μ V/V + 6 μ V 1 mV/V + 6 μ V 3.5 mV/V + 12 μ V 8 mV/V + 50 μ V 302 μ V/V + 8 μ V 148 μ V/V + 8 μ V 163 μ V/V + 8 μ V 353 μ V/V + 8 μ V 804 μ V/V + 32 μ V 2 mV/V + 70 μ V 302 μ V/V + 50 μ V 153 μ V/V + 60 μ V 192 μ V/V + 60 μ V 302 μ V/V + 50 μ V 703 μ V/V + 125 μ V 2.4 mV/V + 0.6 mV 302 μ V/V + 650 μ V 153 μ V/V + 600 μ V 242 μ V/V + 600 μ V 353 μ V/V + 600 μ V 903 μ V/V + 1.6 mV 194 μ V/V + 2 mV 204 μ V/V + 6 mV 253 μ V/V + 6 mV 314 μ V/V + 6 mV 2 mV/V + 50 mV 302 μ V/V + 10 mV 252 μ V/V + 10 mV 302 μ V/V + 10 mV	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure	Up to 10 mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz (10 to 100) mV (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz 100 mV to 1 V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz (1 to 10) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (1 to 2) MHz	300 μ V/V + 3 μ V 219 μ V/V + 1.1 μ V 324 μ V/V + 1.1 μ V 1 mV/V + 6 μ V 5.1 mV/V + 1.1 μ V 41 mV/V + 2 μ V 70 μ V/V + 4 μ V 83.8 μ V/V + 2 μ V 157 μ V/V + 2 μ V 308 μ V/V + 2 μ V 878 μ V/V + 2 μ V 3.1 mV/V + 10 μ V 10 mV/V + 10 μ V 15 mV/V + 10 μ V 70 μ V/V + 40 μ V 80.7 μ V/V + 20 μ V 154 μ V/V + 20 μ V 327 μ V/V + 20 μ V 825 μ V/V + 20 μ V 3.1 mV/V + 0.1 mV 10 mV/V + 0.1 mV 15 mV/V + 0.1 mV 77 μ V/V + 400 μ V 81 μ V/V + 200 μ V 154 μ V/V + 200 μ V 324 μ V/V + 200 μ V 816 μ V/V + 200 μ V 3.1 mV/V + 1 mV 10 mV/V + 1 mV 15 mV/V + 1 mV	Comparison to Keysight 3458A 8.5 Digit Multimeter

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Voltage – Measure	(10 to 100) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz (100 to 300) kHz 300 kHz to 1 MHz (100 to 1 000) V (1 to 40) Hz 40 Hz to 1 kHz (1 to 20) kHz (20 to 50) kHz (50 to 100) kHz	200 μ V/V + 4 mV 205 μ V/V + 2 mV 215 μ V/V + 2 mV 358 μ V/V + 2 mV 1.2 mV/V + 2 mV 4 mV/V + 2 mV 15 mV/V + 10 mV 400 μ V/V + 40 mV 405 μ V/V + 20 mV 600 μ V/V + 20 mV 1.2 mV/V + 20 mV 3 mV/V + 20 mV	Comparison to Keysight 3458A 8.5 Digit Multimeter
AC Current – Measure	Up to 100 μ A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 1 kHz 100 μ A to 1 mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz (20 to 50) kHz (50 to 100) kHz (1 to 10) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz (20 to 50) kHz (50 to 100) kHz	4 mA/A + 30 nA 1.5 mA/A + 30 nA 605 μ A/A + 30 nA 610 μ A/A + 30 nA 4 mA/A + 0.2 μ A 1.5 mA/A + 0.2 μ A 605 μ A/A + 0.2 μ A 325 μ A/A + 0.2 μ A 605 μ A/A + 0.2 μ A 4 mA/A + 0.4 μ A 5.5 mA/A + 1.5 μ A 4 mA/A + 2 μ A 1.5 mA/A + 2 μ A 605 μ A/A + 2 μ A 325 μ A/A + 2 μ A 605 μ A/A + 2 μ A 4 mA/A + 4 μ A 5.5 mA/A + 15 μ A	Comparison to Keysight 3458A 8.5 Digit Multimeter

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Measure	(10 to 100) mA (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz (20 to 50) kHz (50 to 100) kHz 100 mA to 1 A (10 to 20) Hz (20 to 45) Hz (45 to 100) Hz 100 Hz to 5 kHz (5 to 20) kHz (20 to 50) kHz	4 mA/A + 20 μ A 1.5 mA/A + 20 μ A 605 μ A/A + 20 μ A 325 μ A/A + 20 μ A 605 μ A/A + 20 μ A 4 mA/A + 40 μ A 5.5 mA/A + 150 μ A 4 mA/A + 0.2 mA 1.6 mA/A + 0.2 mA 805 μ A/A + 0.2 mA 1 mA/A + 0.2 mA 3 mA/A + 0.2 mA 10 mA/A + 0.4 mA	Comparison to Keysight 3458A 8.5 Digit Multimeter
AC Current – Source	(29 to 330) μ A (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz (0.33 to 3.3) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz (3.3 to 33) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz	2 mA/A + 0.1 μ A 1.5 mA/A + 0.1 μ A 1.3 mA/A + 0.1 μ A 3 mA/A + 0.15 μ A 8 mA/A + 0.2 μ A 16 mA/A + 0.4 μ A 2 mA/A + 0.15 μ A 1.3 mA/A + 0.15 μ A 1 mA/A + 0.15 μ A 2 mA/A + 0.2 μ A 5.1 mA/A + 0.3 μ A 10 mA/A + 0.6 μ A 1.8 mA/A + 2 μ A 910 μ A/A + 2 μ A 423 μ A/A + 2 μ A 813 μ A/A + 2 μ A 2 mA/A + 3 μ A 4.1 mA/A + 4 μ A	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
AC Current – Source	(33 to 330) mA (10 to 20) Hz (20 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (10 to 30) kHz (0.33 to 1.1) A (10 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (1.1 to 3) A (10 to 45) Hz 45 Hz to 1 kHz (1 to 5) kHz (5 to 10) kHz (3 to 11) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz (11 to 20.5) A (45 to 100) Hz 100 Hz to 1 kHz (1 to 5) kHz	1.8 mA/A + 20 μ A 909 μ A/A + 20 μ A 417 μ A/A + 20 μ A 1 mA/A + 50 μ A 2 mA/A + 100 μ A 4.1 mA/A + 200 μ A 1.8 mA/A + 100 μ A 512 μ A/A + 100 μ A 6 mA/A + 1 mA 25 mA/A + 5 mA 1.8 mA/A + 100 μ A 664 μ A/A + 100 μ A 6 mA/A + 1 mA 25 mA/A + 5 mA 1.8 mA/A + 100 μ A 664 μ A/A + 100 μ A 6 mA/A + 1 mA 1.2 mA/A + 5 mA 1.5 mA/A + 5 mA 30 mA/A + 5 mA	Comparison to Fluke 5522A Multi Product Calibrator
Resistance – Measure ¹	100 μ Ω to 10 Ω (10 to 100) Ω 100 Ω to 1 k Ω (1 to 10) k Ω (10 to 100) k Ω 100 k Ω to 1 M Ω (1 to 10) M Ω (10 to 100) M Ω	20 μ Ω / Ω + 50 μ Ω 17 μ Ω / Ω + 5 μ Ω 15 μ Ω / Ω + 500 μ Ω 15 μ Ω / Ω + 5 m Ω 15 μ Ω / Ω + 50 m Ω 20 μ Ω / Ω + 2 Ω 83 μ Ω / Ω + 100 Ω 820 μ Ω / Ω + 1 k Ω	Comparison to Keysight 3458A 8.5 Digit Multimeter

Electrical – DC/Low Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Resistance – Source ¹ (Simulation)	Up to 11 Ω (11 to 33) Ω (33 to 110) Ω (110 to 330) Ω 330 Ω to 1.1 kΩ (1.1 to 3.3) kΩ (3.3 to 11) kΩ (11 to 33) kΩ (33 to 110) kΩ (110 to 330) kΩ 330 kΩ to 1.1 MΩ (1.1 to 3.3) MΩ (3.3 to 11) MΩ (11 to 33) MΩ (33 to 110) MΩ (110 to 330) MΩ 330 MΩ to 1.1 GΩ	36 μΩ/Ω 26 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 23 μΩ/Ω 24 μΩ/Ω 26 μΩ/Ω 26 μΩ/Ω 42 μΩ/Ω 110 μΩ/Ω 201 μΩ/Ω 400 μΩ/Ω 2.5 mΩ/Ω 12 mΩ/Ω	Comparison to Fluke 5522A Multi Product Calibrator
Capacitance – Source ¹ (Simulation)	10 Hz to 10 kHz (220 to 400) pF (0.4 to 1.1) nF 10 Hz to 3 kHz (1.1 to 3.3) nF 10 Hz to 1 kHz (3.3 to 11) nF (11 to 33) nF (33 to 110) nF (110 to 330) nF (10 to 600) Hz (0.33 to 1.1) μF (10 to 300) Hz (1.1 to 3.3) μF (10 to 150) Hz (3.3 to 11) μF (10 to 120) Hz (11 to 33) μF (10 to 80) Hz (33 to 110) μF DC to 50 Hz (110 to 330) μF	6.4 mF/F + 10 pF 5.3 mF/F + 10 pF 5.1 mF/F + 10 pF 2.6 mF/F + 10 pF 2.6 mF/F + 100 pF 2.6 mF/F + 100 pF 2.6 mF/F + 300 pF 2.6 mF/F + 1 nF 2.6 mF/F + 3 nF 2.6 mF/F + 10 nF 4.1 mF/F + 30 nF 4.7 mF/F + 0.1 μF 4.6 mF/F + 0.3 μF	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Capacitance – Source ¹ (Simulation)	DC to 20 Hz (0.33 to 1.1) mF DC to 6 Hz (1.1 to 3.3) mF DC to 2 Hz (3.3 to 11) mF DC to 0.6 Hz (11 to 33) mF DC to 0.2 Hz (33 to 110) mF	4.6 mF/F + 1 μ F 4.5 mF/F + 3 μ F 4.5 mF/F + 10 μ F 7.5 mF/F + 30 μ F 11 mF/F + 100 μ F	Comparison to Fluke 5522A Multi Product Calibrator
Electrical Simulation of Thermocouple Indicators ¹	Type B (600 to 800) °C (800 to 1 000) °C (1 000 to 1 550) °C (1 550 to 1 820) °C Type C (0 to 150) °C (150 to 650) °C (650 to 1 000) °C (1 000 to 1 800) °C (1 800 to 2 316) °C Type E (-250 to -100) °C (-100 to -25) °C (-25 to 350) °C (350 to 650) °C (650 to 1 000) °C Type J (-210 to -100) °C (-100 to -30) °C (-30 to 150) °C (150 to 760) °C (760 to 1 200) °C Type K (-200 to -100) °C (-100 to -25) °C (-25 to 120) °C (120 to 1 000) °C (1 000 to 1 372) °C	0.44 °C 0.34 °C 0.3 °C 0.33 °C 0.3 °C 0.26 °C 0.31 °C 0.5 °C 0.84 °C 0.5 °C 0.16 °C 0.14 °C 0.16 °C 0.21 °C 0.27 °C 0.16 °C 0.14 °C 0.17 °C 0.23 °C 0.33 °C 0.18 °C 0.16 °C 0.26 °C 0.4 °C	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of Thermocouple Indicators ¹	Type L (-200 to -100) °C (-100 to 800) °C (800 to 900) °C Type N (-200 to -100) °C (-100 to -25) °C (-25 to 120) °C (120 to 410) °C (410 to 1 300) °C Type R (0 to 250) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type S (0 to 250) °C (250 to 400) °C (400 to 1 000) °C (1 000 to 1 767) °C Type T (-250 to -150) °C (-150 to 0) °C (0 to 120) °C (120 to 400) °C Type U (-200 to 0) °C (0 to 600) °C	0.37 °C 0.26 °C 0.17 °C 0.4 °C 0.22 °C 0.19 °C 0.18 °C 0.27 °C 0.57 °C 0.35 °C 0.33 °C 0.4 °C 0.47 °C 0.36 °C 0.37 °C 0.46 °C 0.63 °C 0.24 °C 0.16 °C 0.14 °C 0.56 °C 0.27 °C	Comparison to Fluke 5522A Multi Product Calibrator
Electrical Simulation of RTD Indicators ¹	Pt 385, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C (630 to 800) °C	0.05 °C 0.05 °C 0.07 °C 0.09 °C 0.1 °C 0.12 °C 0.23 °C	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	Pt 3926, 100 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 300) °C (300 to 400) °C (400 to 630) °C Pt 3916, 100 Ω (-200 to -190) °C (-190 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C Pt 385, 200 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C Pt 385, 500 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C	0.05 °C 0.05 °C 0.07 °C 0.09 °C 0.10 °C 0.12 °C 0.25 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.08 °C 0.09 °C 0.1 °C 0.23 °C 0.04 °C 0.04 °C 0.04 °C 0.05 °C 0.12 °C 0.13 °C 0.14 °C 0.16 °C 0.04 °C 0.05 °C 0.05 °C 0.06 °C 0.08 °C 0.08 °C 0.09 °C 0.11 °C	Comparison to Fluke 5522A Multi Product Calibrator

Electrical – DC/Low Frequency
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Electrical Simulation of RTD Indicators ¹	Pt 385, 1 000 Ω (-200 to -80) °C (-80 to 0) °C (0 to 100) °C (100 to 260) °C (260 to 300) °C (300 to 400) °C (400 to 600) °C (600 to 630) °C PtNi 385, 120 Ω (Ni120) (-80 to 0) °C (0 to 100) °C (100 to 260) °C Cu 427, 10 Ω (100 to 260) °C	0.03 °C 0.03 °C 0.04 °C 0.05 °C 0.06 °C 0.07 °C 0.07 °C 0.23 °C 0.08 °C 0.08 °C 0.14 °C 0.3 °C	Comparison to Fluke 5522A Multi Product Calibrator

Length – Dimensional Metrology
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Indicators ^{1,2}	(0.000 1 to 6) in	(8 + 3L) μ in	Comparison to Horizontal Measuring Machine
Calipers ^{1,2}	Up to 60 in (60 to 80) in	(5 + 8L) μ in (410 + 2L) μ in	Comparison to Gage Blocks
Outside Micrometers ^{1,2} Linearity	Up to 12 in (12 to 24) in	(5 + 8L) μ in (34 + 4.6L) μ in	Comparison to Gage Blocks
Anvil Flatness	Up to 1 in D (0 to 84) μ in	4 μ in	Optical Parallels
Height Measuring Devices ^{1,2}	Up to 36 in (36 to 48) in	(45 + 2L) μ in (7 + 3L) μ in	Comparison to Gage Blocks
External Diameter ^{1,2}	(0.000 1 to 6) in	(8+3L) μ in	Comparison to Horizontal Measuring Machine
Internal Diameter ^{1,2}	(0.04 to 13) in	(8+3L) μ in	Comparison to Horizontal Measuring Machine

Length – Dimensional Metrology
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Thread Plugs ^{1,2} Pitch Diameter	Up to 8 in Pitch (0.2 to 5) mm	(87 + 1.9L) μ in	Comparison to Horizontal Measuring Machine
	Major Diameter Pitch 90 – 4 TPI Up to 4 in	(3.5 + 4.6L) μ in	Thread Measuring Wires
Thread Rings (Adjustable) Pitch Diameter Tactile Fit (Set to Plug)	Up to 4 in	See footnote ⁵	Comparison to Thread Setting Plug
Optical Comparators ^{1,2} Linear Accuracy	Up to 6 in 6 to 12 in	(43 + 11L) μ in (30 + 7.5L) μ in	Comparison to Glass Scale
	Magnification 5X to 100X	350 μ in	Glass Scale (Sphere)
Surface Plates ^{1,2} Overall Flatness	Up to 238 inDL	(25 + 2.9L) μ in	Comparison to Laser System
	Local Area Flatness	34 μ in	Repeat-O-Meter
CMMs ^{1,2} (Linearity only)	(0 to 144) in	(25 + 2.4L) μ in	Comparison to Laser Measuring System
VMMs ^{1,2} (Linearity)	Up to 6 in	(32 + 4.1L) μ in	Comparison to Glass Scales
Horizontal Measuring Systems ^{1,2}	Up to 8 in (8 to 60) in	(6 + 1.7L) μ in (3 + 2.5L) μ in	Comparison to Gage Blocks
Feeler/Thickness Gages ²	Up to 0.2 in	(4.3 + 3L) μ in	Comparison to Horizontal Measuring System
Indicator Calibrator ^{2,7} Linearity	Up to 6 in	60 μ in	Comparison to Horizontal Measuring System
Groove Micrometers ^{2,7}	Up to 12 in	(44 + 2.6L) μ in	Comparison to Gage Blocks
Stereo Microscopes ¹ Reticle Linearity	Up to 2 in	870 μ in	Comparison to Stage Micrometer
Toolmakers Microscope ^{2,7} Scale Linearity	Up to 4 in	(774 + 70L) μ in	Comparison to Stage Micrometer
Length Standards ²	(1 to 60) in	(3.4 + 3.5L) μ in	Comparison to Horizontal Measuring System

Length – Dimensional Metrology
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Inside Micrometers ²	Up to 8 in (8 to 60) in	$(6 + 1.7L) \mu\text{in}$ $(3 + 2.5L) \mu\text{in}$	Comparison to Horizontal Measuring System
Parallels ² Steel Granite	Up to 18 in Up to 18 in	$(96.3 + 1.8L) \mu\text{in}$ $(48.6 + 0.7L) \mu\text{in}$	Comparison to Electronic Amplifier with Probe, Surface Plate
Thickness Gages ² Dial Digital	Up to 1 in	$410 \mu\text{in} + 0.6R$ $44 \mu\text{in} + 0.6R$	Comparison to Gage Blocks
Thread Micrometers ² (Screw Thread, Pitch Point) Linearity ⁷ Anvil Wear	Up to 12 in Up to 12 in	$(44 + 2.6L) \mu\text{in}$ $690 \mu\text{in}$	Comparison to Gage Blocks, Thread Setting Plug

Mass and Mass Related
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Force ¹ (Source)	(0.035 to 16) ozf (1 to 10) lbf (10 to 50) lbf (50 to 500) lbf	0.018 % of reading 0.018 % of reading 0.018 % of reading 0.036 % of reading	Comparison to Dead Weight
Pressure ¹ (Absolute)	(0 to 100) psia	0.07 psi	Comparison to Pressure Calibrator
Pressure ¹ (Gauge)	(0 to 1) inH ₂ O (-15 to 30) psig (0.036 to 1) psig (100 to 300) psig (300 to 1 000) psig (1 000 to 10 000) psig	0.003 5 inH ₂ O 0.019 psi 0.013 psi 0.12 psi 0.4 psi 2.4 psi	Comparison to Pressure Calibrator
Torque Tools ¹	(5 to 50) lbf·in (50 to 400) lbf·in (400 to 1000) lbf·in (80 to 250) lbf·ft (250 to 600) lbf·ft (600 to 2 000) lbf·ft	0.33 % of reading 0.36 % of reading 0.4 % of reading 0.28 % of reading 0.51 % of reading 0.75 % of reading	Comparison to Torque Tester

Mass and Mass Related
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Torque Transducers ¹	0.5 ozf·in to 1 000 lbf·ft	0.08 % of reading	Comparison to Dead Weights, Torque Arms
Scales and Balances ^{1,6}	(0 to 500) mg 500 mg to 5 g (5 to 10) g (10 to 30) g (30 to 50) g (50 to 100) g (100 to 200) g (200 to 300) g 300 g to 1 kg (1 to 2) kg (2 to 3) kg (3 to 5) kg (5 to 10) kg (10 to 20) kg (20 to 25) kg (25 to 30) kg	10 µg 34 µg 50 µg 74 µg 0.12 mg 0.25 mg 0.5 mg 0.75 mg 2.5 mg 5 mg 7.5 mg 12 mg 25 mg 50 mg 62 mg 75 mg	Comparison to ASTM E617 Class 1 Weights, and internal calibration procedure utilized in the calibration of the weighing system.
Scales and Balances ^{1,6}	(0.5 to 1 000) lb	0.01 % of reading	Comparison to ASTM E617 Class 6 Weights, and internal calibration procedure utilized in the calibration of the weighing system.

Thermodynamic
Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Measure ¹	(-20 to 100) °C (100 to 425) °C (425 to 500) °C	0.058 °C 0.069 °C 0.086 °C	Comparison to Digital Temperature Gage
Humidity – Measure ¹	(10 to 90) %RH (90 to 98) %RH	1.1 %RH 2 %RH	Comparison to Humidity Indicator

Thermodynamic

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature Uniformity Survey ¹ (TUS)	Up to 200 °F (200 to 1 000) °F (1 000 to 1 400) °F (1 400 to 1 800) °F (1 800 to 2 000) °F (2 000 to 2 300) °F	1.6 °F 1.8 °F 2.1 °F 2.9 °F 4.1 °F 4.3 °F	Comparison to Temperature Datalogger, Type K Thermocouples per AMS 2750.

Time and Frequency

Eau Claire, WI

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Frequency – Reference ⁴	1 MHz	25 µHz	Comparison to Fluke 5522A Multi Product Calibrator

DIMENSIONAL MEASUREMENT

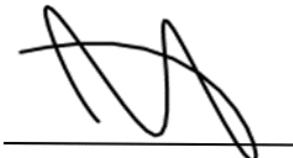
2 Dimensional

Eau Claire, WI

Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
2-D Non-contact ²	(15.4 x 10.8) in	(126 + 12L) µin	Comparison to Vision System

3 Dimensional

Eau Claire, WI


Specific Tests and / or Properties Measured	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method and/or Equipment
Dimensional Inspection Contact ²	(16 x 18 x 14) in	(209 + 1.2L) µin	Comparison to Coordinate Measuring Machine

[Return to Site listing \(top\)](#)

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 ($k=2$), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope
2. The use of (R) signifies the Resolution of the unit under test; the use of (L) represents Length in inches; the use of (D) represents Diameter in inches; " = arc-second.
3. Uncertainties listed for Electromagnetic - DC/Low Frequency and RF/Microwave does not include possible contributions from a "best available" unit under test
4. Derivatives of 10 MHz will have different uncertainties due to resolution, noise, and gating errors.
5. The tactile fit of an adjustable thread ring to a thread-setting plug is not a measurement of pitch diameter. The uncertainty for this pitch diameter setting is based on the contributors associated with the thread setting plug and environmental contributors only.
6. The CMC for scales and balances are highly dependent upon the resolution of the unit under test. The uncertainties presented here does not include the resolution of the unit under test. The resolution will be included in the reported measurement uncertainty at the time of calibration.
7. $0.6R$ will be added to the Measurement Uncertainty at the time of calibration, where R is the resolution of the device under calibration.

Jason Stine, Vice President

