
Application Note

F r o m t h e F l u k e D i g i t a l L i b r a r y @ w w w . f l u k e . c o m / l i b r a r y

Ken Roach is a technical
consultant for Rockwell Auto-
mation. He works from the
company’s Seattle office and
supports that office’s sales
engineers and managers in the
installation of Rockwell Auto-
mation’s advanced products.
“They know how to sell them.
They know how to price them.
I know how to plug them in
and make them work,” Roach
explains.

Roach recently solved a
perplexing Modbus RS-485
communications-timing
problem using a Fluke 125
ScopeMeter test tool. The Fluke
125 is a battery-powered,
three-in-one instrument that
combines a 40 MHz digital
storage oscilloscope, two true-
RMS digital multimeters and a
dual input TrendPlot™ recorder.
In particular, it includes an
automatic network health test
feature. “I often need to get
down to the signal level on
communication networks and
take a close look at the bits and
bytes that are going by on the
electronic level”, Roach reveals.
“That’s where we encountered
the Fluke 125 and its features
for troubleshooting industrial
control and communications
systems.”

The problem
Roach describes the situation
he faced this way: “I had an
Allen-Bradley MicroLogix 1100
Controller (PLC) connected as a
Modbus RTU (remote terminal
unit) master to a compact third-
party thermistor monitoring
block. Troubleshooting should
have been easy because the

What: Fluke 125 ScopeMeter®
Test Tool

Tests: Modbus RS-485 health test

Who: Ken Roach, Technical
Consultant, Rockwell Automation

Testing Functions
Case Study

Fluke ScopeMeter® 125
helps solve a Modbus
RS-485 timing problem

monitoring block has a three-
wire RS-485 interface and uses
totally normal Modbus Func-
tion 03 (Holding Register Read)
functions for all the data.”

The MicroLogix 1100 was
equipped with a 1763-NC01
cable that connected its
isolated three-wire RS-485
port to a terminal block. One
hundred-twenty-five feet of
Belden 9841 shielded cable
was then connected to the
thermistor monitoring block.

Connected through a
1716-NET-AIC isolator (an
RS-232 to RS-485 signal
converter), the PLC software
utility that comes with the
thermistor block could commu-
nicate with the block, but the
MicroLogix 1100 could not. “We
were certain that the Modbus
addressing parameters were
right in RSLogix 500 (the PLC
programming software), so we
tried a Modbus RTU master
simulator (ModSim32). It
worked fine,” Roach reveals.

Next, Roach connected a
passive, binary, serial analyzer,
and the analyzer showed
absolutely nothing wrong. “It
showed, byte one, byte two,
byte three, byte four, byte
five…,” Roach says. “The device
was responding correctly,
within the protocol, to the
MicroLogix RTU master poll
(request for information).” Still,
the PLC continued to gener-
ate a “Timeout” error on the
message instruction. In other
words, the poll was received
by the thermistor monitoring
block, but the PLC was timing
out during the response.

2 Fluke Corporation Fluke ScopeMeter® 125 helps solve a Modbus RS-485 timing problem

Next Roach set the Fluke 125
to capture the waveform at 500
microseconds per division. This
allowed a resolution at which

he could see each individual
byte going by and was able
to capture the three bytes that
were the header of the Modbus
packet. (See Figure 2.)

The solution
“My usual serial analysis
tools didn’t do the job,” Roach
explains, “so I turned to the
Fluke 125. What it revealed
that the serial analyzer had
failed to reveal was a relatively

long pause—about 7 milli-
seconds—between byte three
and everything else. It was
something that the customer
pointed to right away and said,
‘What’s that?’” (See Figure 1.)

Figure 1. This data capture at 5 ms/div reveals both the poll and the response. Notice the delay of approximately 7 ms in the response.

Figure 2. The data capture of the first three bytes of the Modbus RTU response at 500 µs/div. This representation includes a decoding of
the response signal to clarify the slave node address, the function code and response data length in bytes (represented by the binary logic
manually superimposed above the waveform).

500ms/Div

500 µs/div-1.00 ms

Input A

Fluke.	 Keeping your world
	 up and running.®

Fluke Corporation
PO Box 9090, Everett, WA 98206 U.S.A.

Fluke Europe B.V.
PO Box 1186, 5602 BD
Eindhoven, The Netherlands

For more information call:
In the U.S.A. (800) 443-5853 or
Fax (425) 446-5116
In Europe/M-East/Africa +31 (0) 40 2675
200 or
Fax +31 (0) 40 2675 222
In Canada (800)-36-FLUKE or
Fax (905) 890-6866
From other countries +1 (425) 446-5500 or
Fax +1 (425) 446-5116
Web access: http://www.fluke.com

©2008 Fluke Corporation.
Specifications subject to change without notice.
Printed in U.S.A. 3/2008 3306965 A-EN-N Rev A

Roach further explains that
the MicroLogix serial port in
Modbus RTU master mode has
a settable inter-character time
value. The default value of
zero applies the Modbus RTU
3.5 byte time to the port. “We
adjusted this value,” he reveals,
“and found that a value of 10
milliseconds made communica-
tions between the MicroLogix
1100 and the analog block
device work perfectly.”

In summary, Roach says, “I
was pretty sure I could solve
almost any Modbus RTU or DF1*
issue with my serial analyz-
ers, but their timestamps aren’t
accurate enough to find this
kind of delay inside a serial
data string. The Fluke 125,
which did a good job showing
the serial rate as well as the
max-min waveform values, was
an excellent tool for trouble-
shooting this situation.”

* DF1 is a Serial Communications Protocol
used by most of Rockwell Automation’s
(Allen-Bradley) programmable controllers.

3 Fluke Corporation Fluke ScopeMeter® 125 helps solve a Modbus RS-485 timing problem

Bytes, bits and waveforms
In Figure 2, the waveform at
500 microseconds per division,
the oscilloscope displayed left-
to-right the sequence in which
these bytes were coming down
the wire. What an analyst must
remember, especially an analyst
who is not completely conver-
sant in how bytes and bits tie
to waveforms, is that the usual
way of decoding these things
on paper is to write “the least
significant bit” on the right of
the page. However, when look-
ing at a byte on the oscilloscope,
remember that it’s the other way
around—left to right.

In addition, one must under-
stand also “serial framing.” Even
though a byte that comes across
a serial line has only eight bits
of data, there are actually ten
bits on the line because there’s
a stop bit and a start bit. That’s
easy to forget, because there is
no space or time between the
stop and start bits.

Conclusion
A Modbus RTU poll response
begins with the slave node
address, the function code,
and the response data length
in bytes. Typically, these data
are followed by the response
data and the CRC checksum.
A close look at the data packet
in Figure 2 allows one to see
that this first short data packet
consisted of the values 1, 3,
and 64. That is the correct
response before the actual
data values for the polling of
Modbus Node 1 with function
code 3 for 32 words (64 bytes).

Roach conjectures that the
thermistor monitoring block
lacked sufficient CPU power to
make a complete response that
included response data and
the CRC checksum, without
pausing to “catch its breath.”
If that is the case, the little
device might respond to the
Modbus RTU poll with the first
three bytes, then pause seven
milliseconds before it sends the
data itself.

Roach notes that the Modbus
RTU specification says that
any idle space of more than
3.5 byte widths is considered
the end of the frame and the
beginning of another. Clearly,
the response was timing out.

