

Qualification Specifications and Test Points for Agilent GCMS Systems

Test	Set Points/ Range	Acceptance Criteria
Oven Temperature Accuracy	Temperature 1 = 40°C Temperature 2 = 100°C Temperature 3 = 230°C	±2.0°C
Oven Temperature Stability	Temperature 1 = 100°C	±2.0°C
Headspace Oven Temperature Accuracy	Temperature 1 = 100°C	±4.0°C
Inlet Leak Test	Pressure 1 = 25 psi	≤ 2.0 psi over 5 minutes
Inlet Pressure Accuracy	Pressure 1 = 25psi	±1.2 psi
FID Flow Rate Accuracy	Air Flow Rate = 400ml/min Hydrogen Flow Rate = 30ml/min Make-up Flow Rate = 25 ml/min	Air: ± 40.0 ml/min Hydrogen: ±3.0 ml/min Make-up: ± 2.5 ml/min
TCD Flow Rate Accuracy	Reference Flow Rate = 30 ml/min Make-up Flow Rate = 5 ml/min	Reference: ± 3.0 ml/min Make-up: ± 0.5 ml/min
Injection Precision (ALS)	Injection Volume = 1µl	Area %RSD ≤ 5.0% RT %RSD ≤ 1.0%
Headspace Injection Precision	Injection Volume = loop	%RSD ≤ 5.0%
Carryover (HS only)	Injection Volume = 0mL	≤ 1.00%
Linearity (ALS only)	Five (5) appropriate injection volumes based on detector response. Ex: 0.5, 1.0, 1.5, 2.0, 2.5 µl	R² ≤ 0.9990
Noise/Drift	Detector Signal	≤ 0.20%
Log Amp	N/A	Max Abundance > 20,000
RF Voltage	Amu: 1500m/z (5975/5977) Amu: 800m/z (5973)	Drift ≤ 100mV
Tune Evaluation	Autotune	No errors
Mass/Ratio Precision	Same as Injection Precision	%RSD < 5.0%

Variance Allowed

Overview for Above Mentioned Tests

1. Oven Temperature Accuracy

DESCRIPTION:

A calibrated digital thermometer is used to measure the oven temperature at three set points.

ACCURACY CALCULATION:

Abs (Temperature Setpoint - Temperature Measured)

UNDERLYING PRINCIPLE:

Temperature accuracy is important for transferring methods between instruments.

2. Oven Temperature Stability

DESCRIPTION:

After a 30 minute equilibration period at 100°C, a calibrated digital thermometer is used to measure the oven temperature. Temperature Readings are taken at 2 minute intervals for ten minutes.

STABILITY CALCULATION:

%RSD of the temperature readings is calculated by dividing the standard deviation of the temperature readings by the average of the temperature readings then multiplied by 100.

UNDERLYING PRINCIPLE:

Temperature stability is critical for repeatability and for transferring methods between instruments.

3. Headspace Oven Temperature Accuracy

DESCRIPTION:

A calibrated thermocouple is used to measure the headspace oven temperature at 100°C.

ACCURACY CALCULATION:

Abs (Temperature Setpoint - Temperature Measured)

UNDERLYING PRINCIPLE:

Temperature accuracy is important for transferring methods between instruments.

4. Inlet Leak Test

DESCRIPTION:

Inlet is capped. Pressure is set to 25 psi. Pressure is turned off and pressure recorded fter equilibration. After 5 min pressure is recorded again.

CALCULATION:

Pressure Drop = Pressure Initial - Pressure Final

UNDERLYING PRINCIPLE:

The Leak Test is critical for transferring methods between systems and accuracy of peak area and peak response time.

5. FID/TCD Flow Rate Accuracy

DESCRIPTION:

Detector gas flow rates are set and measured using a calibrated gas flow meter at the detector exit vent.

ACCURACY CALCULATION:

Abs (Flow RateSet Point – Flow RateMeasured)

UNDERLYING PRINCIPLE:

Flow rate accuracy is important for transferring methods between systems.

6. Injection Precision

DESCRIPTION:

Sample is injected 6 consecutive times using the appropriate method based on inlet/detector configuration. Peaks are integrated and the %RSD for all peak areas is calculated.

PRECISION CALCULATION:

$$\frac{Standard\ Deviation_{Area/RT}}{Average_{Area/RT}}*100$$

UNDERLYING PRINCIPLE:

Injector precision is critical for quantitative analysis accuracy.

7. Carryover (Headspace only)

DESCRIPTION:

A blank injection is made after the six precision injections.

CARRYOVER CALCULATION:

$$\frac{Area_{Blank}}{Area_{Injection \# 6}} * 100$$

UNDERLYING PRINCIPLE:

To have low or no carryover is critical for quantitative and qualitative analysis accuracy and reliability.

8. Injector/Detector Linearity (Optional – Additional cost)

DESCRIPTION:

Five injections of different injection volumes of a traceable Standard are made onto a column.

LINEARITY CALCULATION:

R² is calculated.

UNDERLYING PRINCIPLE:

Linearity is important for transferring methods between systems and for quantitative and qualitative analysis accuracy and reliability.

9. Noise and Drift

DESCRIPTION:

If the software controlling the instrument has the ability to measure noise and drift, a blank injection is made and a signal is take over a 20min span.

CALCULATION:

Noise and Drift are calculated by instrument software.

UNDERLYING PRINCIPLE:

Noise and drift are important for quantitative and qualitative analysis accuracy and reliability. It shows the stability and sensitivity of the detector.

10. Log Amp

DESCRIPTION:

This procedure verifies operation of the log amplifier and the functionality of the main board.

CALCULATION:

N/A

UNDERLYING PRINCIPLE:

A linear output detector is critical for quantitative analysis. The log amplifier amplifies the output of the detector in proportion to the logarithm of the input current.

11. RF Voltage

DESCRIPTION:

The RF voltage is minimized and then ramped for a specified time at a high mass and then the drift is calculated.

CALCULATION:

 $mV_{(start)} - mV_{(end)}$

UNDERLYING PRINCIPLE:

RF voltage ensures correct ion selection.

12. Tune Evaluation

DESCRIPTION:

An autotune is run and evaluated.

CALCULATION:

Software evaluates tune and reports any errors.

UNDERLYING PRINCIPLE:

A correct tune is critical for qualitative mass spectrometry.

13. Mass Ratio

DESCRIPTION:

The ratio of two masses from the injection precision runs and the %RSD is calculated.

CALCULATION:

Ratio = $Mass_{(1)}/Mass_{(2)}$

 $\%RSD = \frac{Standard\ Deviation_{Ratio}}{Average_{Ratio}} * 100$

UNDERLYING PRINCIPLE:

Constant ionization is critical for accuracy of quantitation.

Analytical@Transcat.com 800-285-9822 • Transcat.com

Pre-approval of Qualification for	
-----------------------------------	--

The undersigned person(s) approve the following:

- 1. The use of a validated Excel Spreadsheet to calculate the test results.
- 2. The delivery of tests appropriate to the actual configuration of the systems covered by the services.
- 3. The specifications described in this document where the setpoints and possible optional tests follow:

Name and Role	Signature and Date	

This pre-approval is applicable to the following systems.

After signing; print this page (and the next if there are variances) to PDF and return it to Analytical@Transcat.com.

Analytical@Transcat.com 800-285-9822 • Transcat.com

Variances (if applicable)

Ignore this section if you have selected to follow the standard setpoints.

Test	Setpoint	Standard	Variance	Units	
	Temperature 1	40			
Oven Temp	Temperature 2	100		°C	
	Temperature 3	230			
Stability Temp	Temperature 1	100		°C	
Headspace Oven Temp	Temperature 1	100		°C	
Inlet Leak Test	Pressure	25		psi	
Inlet Accuracy	Pressure	25		psi	
ALS Injection Precision	Injection Volume	1		μL	

Optional Tests (additional cost)

Injector/Detector Linearity

and previous page in report.	· ·	

Engineer completing service: sign here to acknowledge variances. Include this

Analytical@Transcat.com 800-285-9822 • Transcat.com